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Introduction

Statistical processing of experimental data and experiment planning as a
method of optimization and research of technological processes are a powerful
means of achieving the required results in the hands of the researcher.

When carrying out experimental work, there is always a scatter in the obtained
results. On this occasion they say that the results of measurements are a random
variable. The appearance of such random results is associated either with the
random nature of the phenomenon itself, or with various random effects that can
not be controlled. Mathematical statistics studies methods for processing the
results of observations (measurements) of mass random phenomena that have
statistical robustness, regularity, in order to reveal this pattern.

The development of a new technological process and its implementation, the
creation of new modes/materials are usually preceded by the study of available
theoretical and experimental data, the verification, the development of the project
(new technologies, etc.) and optimization of the process conditions. Until now, a
significant part of the research has traditionally been conducted according to the
research scheme for the influence of individual factors.

It should be noted that modern technological processes are complex,
multidimensional and they are a subject to various interference effects.
Stabilization of the conditions for conducting experiments in them is often an
impossible problem, and therefore the traditional scheme of research under such
conditions becomes ineffective. In addition, the aggregate effect of individual
factors (variables) is not always equal to their simple sum due to the phenomenon
of interaction between factors.

As a rule, technological research is associated with significant energy and
material costs, so they are laborious, therefore one of the most important tasks of
the researcher is to achieve the desired result in an optimal way.

Design of experiments allows the researcher to choose from the types of plans
or programs for their construction, the methods of processing experimental data
for the various practical problems that are most acceptable.

The most common experiment is to solve the following two main problems.

The first problem is called extreme. It consists in finding the process conditions
ensuring the optimal value of the selected parameter.

A feature of extremal problems is the requirement to search for an extremum
of a certain function. Experiments that are put to solve optimization problems are
called extreme.

The second problem is called interpolation. It consists in constructing an
interpolation formula for predicting the values of the parameter being explored,
depending on a number of factors.
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To solve an extremal or interpolation problem, it is necessary to have a
mathematical model of the explored object. In most cases, such models can be
obtained using regression analysis.

Classical regression analysis is based on processing the results of passive
experiments. In this case, as applied to engineering and technical problems, the
researcher formulates the experiments in an arbitrary way, choosing experimental
points, based, for example, on intuition or his own experience.

But, as a rule, the essence of the tactics of the researcher is to search through
various conditions for the experiment. When solving such problems, it is
necessary to deal with a very large number of independent variables. In this case,
the method becomes extremely cumbersome, especially the difficulties with
computational operations. But here it should be noted that the widespread use of
personal computers and standard software products for mathematical calculations
virtually eliminate the previous difficulties with computing operations.

When regression analysis is used to process the results of a passive experiment,
the following circumstances should be taken into account:

* In the case of a passive multivariate experiment, it is difficult to estimate the
error of the experiment and, consequently, it is impossible to strictly check the
adequacy hypothesis of the chosen mathematical model from the results of the
experiment;

« It is impossible to construct a criterion for discarding experiments containing
gross errors;

* Independent variables are often pairwise correlated, so the corresponding
effects can not be separated;

* It is not possible to separately evaluate regression coefficients with, for
example, the /- criterion, even when the independent variables are weakly
correlated.

Estimating the results of regression analysis, we can only talk about the
existence of a statistical relationship between the variables, but one can not say
anything about the nature of this relationship. It makes no sense to attach any
importance to individual regression coefficients.

If we approach the regression equations as some interpolation formulas, the
above disadvantages will.can be neglected.

If we need a mathematical model of an object in order to use it later to manage
this object, the uncertainty in the results of the research, connected with the
shortcomings of the obtained regression models, becomes decisive.

Researchers working in the field of statistical processing of experimental data
consider that the results of a passive experiment occurring in a strong noise field
do not contain information on the mathematical model of the process.

But in a number of cases, statistical processing of the results of passive
experiments can be very useful. For example, when evaluating the quality of a
product in a particular process unit or in different shops, it may be useful to
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construct histograms and determine at least two parameters of the distribution
function, the mean and variance.

A comparative statistical analysis of these parameters allows us to compare the
results obtained under different conditions and establish pair correlation relations.
The results of passive observations in some cases can be used for monitoring and
even forecasting.

Thus, the information obtained through passive observation can be very
important for the current monitoring of certain processes (or objects), but it is
completely inadequate for constructing mathematical models with which to
manage the process (or the object).

Since the calculation of the regression coefficients for statistical processing of
the experimental data of passive and active experiments is carried out using the
same expressions, practical examples will be given mainly for active experiments
carried out according to special plans.

New opportunities were opened after the experimental points began to be
selected according to a special plan. Planning an experiment is a new approach to
research, in which mathematical methods play an active role. There is an
opportunity to actively influence the research process, to plan the experiments in
such a way as to obtain maximum information at minimal cost. Such experiments
are usually called active.

l. Research Capabilities Based on Proprietary Software

At present, there are a number of clearly formulated criteria for optimal
planning for different situations, and algorithms have been developed for them,
using which the researcher can locate experimental points in the factor space and
process the results of observations. The main idea of this method is the possibility
of optimal control of the experiment with incomplete knowledge.

On the basis of regression analysis, a mathematical model of the objective
system is obtained, which is called the regression equation. Regression analysis
methods allow choosing the most appropriate ones from several different kinds of
models. Regression analysis is reduced to the determination based on the
experimental data of the model coefficients (regression coefficients), the
evaluation of the significance of these coefficients and the degree of adequacy of
the model.

The model of the object is obtained using the results of experiments. In the
research of a multifactorial process, the formulation of all possible experiments
to obtain a mathematical model is associated with the enormous laboriousness of
the experiment, since the number of all possible experiments is very large.
Experimental planning is to establish the minimum number of experiments
required.
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The results of the experiment are used to obtain a mathematical model of the
explored process. A mathematical model is a system of mathematical relations
describing the explored process or phenomenon.

It has been proven that the support for decision-making is also an important
activity in the design process. The timeliness of this activity is determined on the
basis of the benefits achieved, as in any other optimization process. Unlike
classical optimization, technical decision making takes place under more than one
criteria, with a different number of control parameters. For this reason, our team
has built several software applications to support the process of this application
from engineering practice. Our development activity has been running for more
than fifteen years. For this period of time, applied tasks in the field of casting,
thermal and chemical-thermal processing and the restoration of worn surfaces by
welding and coating are solved.

The software is extremely useful in exploring a set of quality indicators, as in
the material science is the complex of properties after applied processing.
Processing parameters are process input control parameters, and quality indicators
are output controlled reactions. Multicriteria optimization defines these process
modes of the research process, for which the user has explicitly defined certain
preferences of the quality indicators.

The algorithm that is being offered is not complicated. It is related to
multicriterial support for making technical decisions. The algorithm analyzes and
optimizes parameters after an engineering experiment. Since actual experimental
data is used, if the models obtained prove the necessary checks, it means that the
models are adequate and the forecasts obtained are reliable and can be used in
engineering practice. The analysis that is applied is user-friendly. This analysis is
valuable because it provides solutions for multifactor processes. Various
alternatives can be evaluated. So far, software has been developed for two, three
and four control parameters in the study of various selected technical quality
parameters. In the future, under the proposed algorithm, there is an idea to develop
further with control parameters for which the total number is up to ten parameters
describing the technological regime.

The number of previously developed four parameter controls can be
considered as optimal. For tasks with more established influences, they can be
transformed and solved in steps / parts.

The suggested analysis is valuable at the following two points:

1) Specialized software can process simulation test results and thus be used as
a hybrid method in CAD / CAE systems in designing process processes.

2) It can be determined from the many determined solutions that it is
acceptable in terms of economy of spent energy or raw material during the



6

experiment. This realized energy or raw material savings is applied after an
acceptable solution has been obtained from the set quality parameters.

Indeed, how is this approach applied to energy and materials savings. Among
the many technologies investigated with the software, a chemico-thermal process
was developed to enhance the working properties of heat-resistant steels. Several
solutions with a desired set of properties have been identified to solve the task.
This is characteristic of any multi-criterion task. Each particular solution
corresponds to different modes that vary considerably over the duration of the
process or the pressure of the gas used. Thus, among these solutions, a mode with
a shorter chemico-thermal treatment time is chosen which is more energy efficient
and less gas consuming. Thus, on the one hand, a compromise solution is
established that satisfies all the quality indicators and, on the other hand, provides
less energy or material consumption.

The optimization of the complex of properties is accomplished through the
multicriteria optimization module, which produces an effective solution. Any
effective solution, by its very nature, can also be innovative. Effective solutions
are Pareto's solutions. These solutions are not improving optimal solutions.
Strategies for determining effective solutions can be varied: average, geometric,
and so on. Our approach uses the strategy of the pessimistic option. This strategy
maximizes solutions in a matrix containing the smallest value of the criteria
analyzed.

In the modeling area, when the regression model is displayed, it is necessary
to specify the connections between the control and the managed parameters as
input data. They can be pre-planned or consecutively executed, unassigned in the
so-called passive experiment. For a larger number of data processing
observations, a different pattern structure can be applied. Each structure is
evaluated with two estimates. The decision-maker chooses the best structure for
these ratings. The structure determines the respective coefficients of the
regression model. The determined coefficients define the magnitude examined.
Several dimensions investigate define the criteria in the multi-criterion task, with
preferences for them.

The approach is applicable to all processes with multiple adjustable parameters
that vary in range. The variable range is scaled to nine steps in which all controlled
control parameters are changed. In combinations 94, if the parameters are four, the
process under consideration fully analyzes 6541 combinations of control modes.
For defined technical multi-criteria tasks this proposed accuracy is fully
satisfactory.
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The purpose of this section is to present the capabilities of the approach for
analysis and multi-criteria optimization of quality indicators, changing from
several identical (same) parameters operating in a certain interval.

The approach | present to you is appropriate for the design phase of various
new, unsettled processes.

Their technological parameters change in a certain range.

Through the approach one or more sets of technological parameters can be
determined to be experimentally tested when specifying the technology of the test
item.

The desired complex of properties depends on certain combinations of the
technological parameters.

The idea is that this complex is optimal.

Since there are several properties, the optimization procedure is a multi-criteria
one.

From the set/expected values of the criteria/properties, a procedure is
performed which determines the combinations of technological parameters that
can realize it.

After the numerical experiment, it is determined whether the property values
can be improved or reached.

Sometimes different combinations have different energy-intensive content.

This opportunity, like checking software, is very valuable in terms of energy
saving.

In this way the approach can be attributed to innovative instruments.

The approach is characterized by the user friendly attitude of making the
optimal decision.

The solution takes into account which optimal complex of properties to what
combination of parameters corresponds.

This combination of parameters is recorded in the  technological
documentation and it is executed during the technological mode.

The user friendly approach is very valuable because with respect to all
properties, the analyzes and the comparisons are carried out in the same
dimensionless proportions (percents).

Five variable percentage ranges are available that can be expanded or
narrowed, depending on the decision maker’s wishes.

Through this movement to the ‘top’ —the 100%, the boundaries of the variables
are fixed up in several iterations, thus reaching the optimal solutions.

An example of how the approach works in the 2D/two-dimensional case is
illustrated by the following figures.
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For comparison, conventional graphical images are also shown, from which it
Is also possible to trace the veracity of the solution.
Grapavosy j := 2.72833+ 0.26833x1; + 0.2175x1;-x2j — 0.6975-x2j
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There are two models and their graphical images, through countur lines with
Mathcad and our author’s approach.
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The selected visualization models can be multi-criterially optimized because
the maxima and minima of the two models occur for different values of the control
parameters that define the horizontal and vertical axis of variations.
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The optimization problem that is defined is to determine the control process
parameters, the minimal first property and the maximal second property.

From the graph of the presented solution it is clear that the optimal solution
starts at a thickness of 42.5 at 90 degrees and that it is over 64% for the two
explored values.

Because the minimal value is sought for one of the properties, the solution
found to be minimal is less than 36% (100-64%).

=2 d [mkm]
& 35 642.5 {} 50
0 _ - _

o LILIL
1. 000

With the design adopted in the defining area defined by the control parameters,
81 states are controlled (92, where 2 are the parameters and 9 are the nodes in
which the test parameter is controlled).

As impressed by these 81 squares, in these 81 squares there are another 81
states (92) in the case that the parameters are 4, not [just] 2.

Then globally in the domain there are changed: the first (horizontally) and the
second (vertically); locally changes the third (horizontally) and the fourth
(vertically).

An example of an image of a three-parameter model is presented as follows:
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The peculiarity of it is that the local image in the small square on the right does
not occur; the third parameter is treated as 9 striped rectangles instead.

They also have squares inserted because of the possible inclusion of the fourth
parameter.

Here are two selected images with the fourth parameter included with the same
color distribution of the color scales.

In the fixed position of the first and second parameters of the four-factor model
(the white square), a contour diagram is constructed for the third and fourth
parameters.
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The software automatically changes the coloring in the percentage intervals
and there can be observed/read the real and the normalized values of the explored
guantities with two pair of scrolling tools (one for the global location and the
other for the local one).

This task is a problem for analyzing the value of the explored quantity from
the influence of the four technological parameters.

The optimization problem is solved in the space of the technological
parameters and not as in the traditional approaches in the criteria plane.

The proposed variable algorithm in the variable space may also recommend a
weak Pareto solution, but with a more substantial contribution to less energy-
intensive and material-intensive solutions.

This is the reason for the user-friendliness of the analysis.

Three optimization solutions are presented in the figure, in which the ordering
In the achieved requirements between the studied criteria is different.

The decision maker selects the corresponding control parameters depending
on his/her own considerations.

The case is two - dimensional.

It is the same mechanism also for multi-parametric cases.

|7

21—

20—

150 160 170 180 190 200 210

Initially, by refining /localizing at percentage intervals/, the decision is
directed to fixing the global coordinates.

After the global coordinates have been fixed, the local situation of the others,
which are arranged in color, is taken into account.

The choice of one or other global coordinates is again carried out by the
decision maker (DM), for example by economic or environmental considerations.
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A graphical demonstration of the multicriteria optimization method to
maximize two criteria/properties in the criteria space in several iterations is
discussed below.

In the criteria space, Pareto’s front is being built. The inconvenience of this
approach is the many set of the decisions that are subsequently sought by an
evaluation system on which the decision maker (DM) can recommend a solution.

For this reason, we have abandoned and do not use the criteria space.

Recently, the neural approximation is much more valued rather than the
regression.

Input Hidden Layer Output
Layer Layer

Sensor1 —»

Sensor?2 -»

Our explanation for this is that in some cases there is a substantial difference
between the predicted and the real value.
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Although the presented approach is set for regression approximations, the idea
can be applied to a neural approximation, having the know-how about it.

Besides, the software is constructed for up to four parameters.

But we have developed a paper that develops the idea of analysis and
optimization with up to 10 technological control[ling] parameters.

By normalizing /aligning them to an even percentage scale/ of the predicted
values of the models, all inaccuracies are ignored and only the tendency of the
model can be worked out, and the predicted values are for reference.

The presented approach, which is being discussed, monitors the whole area of
the explored property in the change of all control[ling] parameters with a certain
step.

When a complex of properties must be explored, each property can be
analyzed separately by the controlling technological factors and then the
conditions f the complex forming properties are defined.

It is obligatory to set the identifier of each property that determines whether
the researcher is interested in the minimal, maximal or values of the relevant
criterion in the complex.

I.1. Applying the Method of Analysis and Multi-criteria Optimization of the
Mechanical properties for Mg-Li-Al Alloys.

METHODOLOGY FOR CONDUCTING THE SURVEY
The methodology for conducting the study consists of the following steps:

- Preliminary statistical analysis of the study data with visualization of the
dependencies between observed quantities. This includes the determination of the
baseline (descriptive) statistical characteristics, the correlation of the parameters
of the experimental studies and the construction of two-dimensional contour
diagrams between the independent and dependent variables in the study.

- Simplification of dependencies between chemical compounds involved in the
chemical alloy and its mechanical properties using neural models.

- Implementation of a Pareto front modeling software for tensile strengths - Rm
and relative elongation - A. This is based on the results obtained from the previous
steps of the study.

The number of experiments must be sufficient to obtain the models. The database
used at the Dalian University of Technology was used for the analysis. To make
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the calculation more accurate and to keep the secret around it, encryption is
applied.

Coding is performed for each factor based on its minimum and maximum values.
Analysis and optimization results can be used only after decoding. Coding is done
following the dependencies

_(bmin + bmax)
B 2

bio

W = bmax — bio

AAAN,

(b — bio)
w

bkod =

Decoding is done using the formula:

bdekod := w-bkod + bio

Alloys Xa/Li/ Xo [Al/ Rm [MPa] | A[%]
1. | Mg-1Li-1Al | -0.981 -0.872 160.31 11.98
2. | Mg-1Li-3Al | -1.00 -0.23 179.37 10.65
3. | Mg-1Li-5Al | -0.993 0.333 191.78 12.05
4. | Mg-1Li-7Al | -1.00 0.986 170.22 6.65
5. | Mg-3Li-1Al | -0.804 -1.00 138.31 10.63
6. | Mg-3Li-3Al |-0.84 -0.348 191.7 15.25
7. | Mg-3Li-5Al | -0.818 0.266 227.07 155
8. | Mg-3Li-7Al |-0.825 0.847 203.82 6.70
9. | Mg-5Li-1Al | -0.360 -0.914 147.53 21.8
10. | Mg-5Li-3Al | -0.364 -0.319 160.14 11.9
11. | Mg-5Li-5A1 | -0.376 0.287 199.17 8.0
12. | Mg-5Li-7Al | -0.513 1.00 220.03 6.15
13. | Mg-7Li-1Al | -0.073 -0.943 171.18 24.7
14. | Mg-7Li-3Al | -0.107 -0.373 199.84 19.93
15. | Mg-7Li-5Al | -0.259 0.216 222.93 10.1
16. | Mg-7Li-7Al | -0.211 0.797 210.99 4.45
17. | Mg-9Li-1Al | 0.211 -0.882 175.96 22.3
18. | Mg-9Li-3AI [ 0.121 0.348 182.33 21.2
19. | Mg-9Li-5Al | 0.099 0.184 195.06 5.7
20. | Mg-9Li-7Al | 0.055 0.847 225.32 9.56
21. | Mg-11Li-1Al | 0.323 -0.954 189.49 13.45
22. | Mg-11Li-3Al | 0.416 -0.422 201.43 14.55
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23. | Mg-11Li-5Al | 0.38 0.234 192.68 5.4
24. | Mg-11Li-7Al | 0.397 0.811 180.33 4.05
25. | Mg-13Li-1Al | 0.724 -0.986 177.02 11.5
26. | Mg-13Li-3Al | 0.627 -0.387 217.09 8.57
27. | Mg-13Li-5Al | 0.813 0.201 236.47 2.50
28. | Mg-13Li-7Al | 0.773 0.761 224.13 1.00
29. | Mg-15Li-1A1 | 88 -0.936 123.81 26.10
30. | Mg-15Li-7Al | 0.478 0.971 124.78 2.23

Table 1. Variation of control parameters.

Factors Levels of variability for the
control factors
Kon [-1] | Kon[0] | Kon [1]
X1(Mg) [%] 77,93 88,03 98,14
Xo(Li) ,[%] 0,55 9,46 18,37
X3(Al) [%] 0,78 3,58 6,39

ANALYSIS AND VISUALIZATION

The most important task at this stage is to find an opportunity to find a possible
link between independent parameters and dependent characteristics in
experimental research. The statistical analysis allows to determine the
uncorrelated input parameters from the experiment that can be used to construct
a regression model, the percentage of Li and Al elements in the alloy composition.

STATISTICAL DATA

The visualization of the presented primary experimental data illustrates the
available information for altering the mechanical parameters of the alloy of its
chemical composition. In Fig. 1a) shows the two-dimensional contour diagram of
the Rm dependence on the percentage of Li and Al elements in the experiment.
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Fig. 1. Two-dimensional diagrams of the tensile strength dependence - a) and the
relative elongation - b) of the chemical composition of the percentage ratio
between Li and Al.

The models obtained in coded values are as follows. The model output is
accompanied by a dispersion analysis. The models listed in the table are adequate
and they can be used for further analysis and optimization.

Rm (X1,X2) Rm (X{,X>) A (X1,X2)
b(000)=| 208.890 210.154 12.2858
b(100)= | 1.82142 13.9206 -8.86290
b(200)= | 15.1890 28.8338 -8.25563
b(110)=| -11.1139 |-9.36795 -3.35146
b(120)=| -10.6079 -13.0864 -3.31422
b(220)= | -34.2428 -38.7124 0.532559
b(111)=| - - 5.93115
b(112)=| - - 1.78261
b(122)=| - -24.4375 5.38542
b(222)=| - -19.4066 1.03071
R=0.6411 |R=0.6740 R=0.7936
3.3504 > | 2.6168 > | 3.7812>2.3928
2.6207 2.4638

The figures below show in one color the distribution of the mechanical properties
for the change of the two elements lithium and aluminum. The amount of lithium
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Is changed in the horizontal direction of the domain area, and the amount of
aluminum varies vertically. The different models of the table are consistently
examined. Different criteria in a normalized form are generalized in a total
criterion, which is maximized. Simultaneous maximal values of the criteria are

arranged in color.

CINMG_RMZ. AO4

Distribution of tensile strength a) and relative elongation b) depending on the
percentage of aluminum and lithium in the alloy.

C:\MG_RM3.ADa

b4

0. 00
&0. 00
T0.00
0. 00

Distribution of tensile strength for the second adequate model depending
on the percentage of aluminum and lithium in the alloy.
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The last two iterations in determining the optimal solution for the maximal
strength and the maximal elongation

A multi-criteria approach is applied to expertly assess the influence of alloy
composition elements on pre-selected quality indicators to improve the
mechanical properties of the products. Models describing the mechanical
properties of aluminum and lithium, which are relevant to the performance
properties of the product, have been produced. By the applied approach it is
possible to define a composition providing relatively better meanings of the values
of the selected mechanical indices. With new means, facts known to science and
practice are confirmed.

The proposed approach facilitates the optimization of the magnesium alloy
chemical composition improving the properties of the final product. These
requirements generally are followed according to the standards but also may be
associated with certain additional requirements claimed by users. All these pre-
Imposed conditions lead to a set of constraints that must be satisfied by acceptable
solutions. Some restrictions can be defined as relations with true quantitative
nature. This is especially important to restrictions on mechanical properties of the
final product. Their proper formula is based on good mathematical models
describing the effect of alloy composition and processing parameters on the final
properties of casting magnesium alloy. The statistical analysis of industrial data
Is an important and supporting alternative in such cases. That is why we have
limited the field of study only to the influence of the chemical composition of the
heat-treated alloys on the set of properties.  The statistical analysis presented in
this paper is based on of data collected during the real production process.
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1.2. Analysis of Properties of Magnesium Alloys Using the Described
Approach

The analysis is based on a specific database of the relationship between the
composition and the properties. Based on this database, the interval in which each
of the alloying elements varies is determined.

Table 1. Minimum and maximum values of alloying components

Input Chemical | min max
parameter | symbol | [%] [%]
X1 Al 0.0 10.0
X2 Mn 0.0 1.5
X3 Zn 0.0 6.5
X4 Cu 0.0 2.7
Xs Ni 0.0 0.3
Xs Si 0.0 1.0

Regardless of that, the proposed optimization approach for modeling the final
mechanical properties of alloys can be applied to any production process with
steel manufacturing.

The analysis presented in this paper is related to the analysis of mechanical
properties of magnesium specimens described by the following parameters:
tensile strength - Rm [MPa] and relative elongation - A [%]). The limitations
connected with these parameters are due to magnesium grade characteristics and
customer’s specifications.

However, the main problem is that these parameters cannot be under direct
observation during the manufacturing process, so any limitations associated with
them can not be clearly defined in the optimization model. That means that we
must develop models linking the final mechanical properties of the
specimen/sample of the steel chemical composition as all as the parameters of the
production process.

The regression analysis allows describing the relation between the variables of
input and output, without going into the phenomenon nature during the process.
The regression models presented below have been created based on the data
collected during the industrial production process.
The statistical analysis described in this section is based on a data set of 53 records
extracted from the whole database.
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The Least Squares method, LS is used to estimate the regression parameters.
The estimated models of parameters Rm and A obtained in the examinations are
given below.

In respect to the problem under examination, nonlinear regression
dependencies have been identified for each of the mechanical properties of
magnesium alloys. The regression dependencies are of the following kind:

i 5 6 6 6 i 2
fi(x):b0+ Y obixi+ ¥ X boxox+ ¥ bl
Pl A R PTII e 1

Here bj; are the regression model parameters. The coefficients in equations are
defined in Table*. The models can be used for prediction if the check-up F > F
(0.5, v1,v2) described in details has been made.

The analysis of these regression models is performed in a nominalized form in
the range of 0-100%. In this dimensionless scale, all properties can be analyzed
simultaneously and the conclusions about them are generalized and they are easy
for perception.

To minimize the values, it is necessary to define the minimal and maximal
meanings of each of the tested properties. The first step in this determination is to
find values of the chemical composition that meet the minimal and maximal
properties respectively. For the specific case this is defined as follows separately
for each extremum of each property:

Table *. Coefficients of regression modelds of the examined target parameters.

No | Coefficient | Rm A
[MPa] [MPa]

1 Free 114.255 16.33366

member
2 X1 25.97015 | 0.6716988
3 X2 0.704941 | -18.22966
4 X3 7442215 |-3.222518
5 X4 66.06575 | 12.28882
6 Xs 3114.254 | 101.5687
7 Xe 140.6771 | 12.65238
8 X1 Xo -0.40418 |-0.1963183
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Minimize (UTS, Al,Mn, Zn,Cu,Ni, Si) =

9 X1 X3 -1.084408 | -0.0068298
10 | X1 X4 -712.2078 | -0.6545856
11 | X1 Xs 237.9817 |9.555618
12 | X1 Xe -0.778058 | 0.1666764
13 | X2 X3 -44.53689 | 2.326275
14 | Xo X4 101.9566 |-15.04205
15 | X2 Xs 1768.658 | 336.508
16 | X2 Xe -36.39456 | 21.76996
17 | X3 X4 0.7895336 | 0.1440411
18 | X3 Xs -414.173 | 18.49442
19 | X3 X6 -99.81348 | 0.05190802
20 | X4 Xs 2369.462 | 150.6452
21 | X4 X 138.7343 | -61.84769
22 | X5 X -2435.761 | -121.6928
23 | X¢? -1.798813 | -0.1700993
24 | X5? 53.00094 | 7.873145
25 | X4? -5.917203 | 0.3912327
26 | X4 -43.78463 | -2.977206
27 | Xs? -74966.48 | -4711.342
28 | X¢? -105.1666 | -24.45902
R 0.888 0.914
F 3.449 4.684

10

0.08
0

2.7
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15

Maximize (UTS, Al,Mn,Zn,Cu,Ni, Si) = ’7

0.065

10
15

Minimize (Elon, Al ,Mn, Zn,Cu,Ni, Si) = ’7

3.337
15
6.5

0

0.071

0.769

Maximize (Elon, Al ,Mn, Zn, Cu,Ni, Si) =

After determining the composition of each element in which the

corresponding extremum is present, the assigned combination of this composition
is replaced in the corresponding model to determine the value of the extremum
necessary to determine the normalized values.
The figures show the possibility of comparing both analyzed properties when
changing a pre-selected alloying element. Usually the other varying elements are
fixed to the maximal values of one of the optional properties. In some cases, these
levels overlap.
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100 85
Sof
UTSn(A1.15.0.1.0.1) __ Elongn(Al.1.5.0.1.0.1)
UTSn(AL15.1.1.0.1) Elongn(Al.1.5.1.1.0.1)
UTSn(A1.15.2.1.0.1) oo ~.| FElongn(A1.1.5.2.1.0.1)
g2
44t
10 31
0 2 4 6 s 10

Al

On the figure except aluminum in its entire range, zinc is also changed in
three positions, at values of 0, 1, and 2%. According to the depicted scales, it can
be determined that the tensile curves vary much more steeply than the relative
elongation because the two vertical scales are scaled differently. Such an analysis
can be carried out for each of the graphs below.

100 84
\u
\u
s
— 838
\u
UTSn(4. Mn.0.1.0.1) ol ‘.\ Elongn(4 Mn.0.1.0.1)
UTSn(4,Mn.,1.1,0.1) ___———-—"*'""' ny Elongn(4 Mun.1.1,0.1)
UTSu(4, Mu,2,1,0,1) <o '~ Elongn(4 Mn.2.1.0.1)
— 834
44r
0 §3.2
0 0.5 1 1.5

Mn
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Al [%] 10 BErreEEs

Zn =6 % const

Zn = 59% const

Al [%] 10

Zn =4 % const Zn =4 9% const
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Al [%] 10 Al[%] 10 g
5 5
0 0

Zn =3 % const Zn =3 % const
Al [%] 10 =r= e |

Zn =2 % const

Al [%] 10

Zn =1"9% const Zn =1 9% const

From the analysis of the graphical dependencies, the following conclusions
can be made: Assuming that we have fixed most of the alloying elements at their
optimal levels, then for the alumina variation we can note that the optimal
aluminum content at the tensile strength is a little above 5%, and for the
elongation, it is about 2%.. The optimal zone expands or narrows following the
different zinc content of both properties. In terms of the strength it grows with the
zinc reduction. In a much lesser ratio, the relative elongation value of the zinc
change is changed.
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With these two types of less common graphic analyses we present analyses
of regression models that can be useful as evidence of one or another trend.

UTS%np  zn:= UTSN(Al,1.5,7n,0,0,1)
Elong%ngp| . zn:= Elongn(Al,1.5,7n,0,0,1)

n1 25345678910 o1 2349 678 910

UT S%n Elong%n

The contour diagrams with equilevel lines are very popular as three-
dimensional diagrams of the response surface depending on the change of two
parameters. Unlike the traditional three-dimensional diagrams, these graphs
readily measure the value of the test parameter at fixed control parameters.. This
way for presentations has made it a complete procedure of previous imagery with
fewer images to provide more information.

UTsnal.cu:= UTSn(Al,15,2,Cu,0,1)
Elongnal  cu := Elongn(Al,,1.5,2,Cu,0,1)

2 hE=
17548
1.5

n1 2949 7R 910 n1 2 <45 4678 %910

UTSn Elongn
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1.3 Taguchi methodology applied to the magnesium alloys design

The second contribution in the development of methods for metallurgical
design is associated with the Taguchi methodology for analysis of the selected
quality parameters.

With respect to the objective problem, for each of the mechanical properties
of the steels there are identified nonlinear regressions of the form:

919 The effects of the factors are determined for each

Relation (S/N)= o
row, using the formula to minimize performance characteristics:

S 1
— =-10log = 2
v g néy.,

for maximaze

E:—1OIog EZ%
N N Y

The composition optimization is performed only in respect to yield strength
Rm and respective elongation A.
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Table. Orthogonal matrix I (27,13) developed by Taguchi with factors at

three levels

X2 (X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13

Run X1

10
11
12
13
14
15
16
17
18
19
20
21

22
23
24
25
26
27
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Following Taguchi methodology (Khosrow Dehnad, 1989) an experiment is made
modeled on orthogonal matrices developed by him. The experiment can be
performed in two ways by:

- areal experiment leading to obtaining results for processing;

- a numerical experiment with the presence of adequate regression

models.

The availability of the described model coefficients, which can be used to
predict, give a possibility to make a numerical experiment involving Taguchi
method. The noise matrix is selected from orthogonal matrix | (27,13) with 27
rows and 13 columns developed by Taguchi. The matrix is worked out with
factors at three levels — Table 3.

The methodology proposed is implemented for tensile strength Rm and
relative elongation A. To take out the models of these two target functions, 53
experiments that form the data matrix A (53, 6 +1) have been used. Here the added
column "1" is for the output target function Rm or A stored compactly in the
matrix.

To optimize the computing process, the scheme, which having been
processed for the particular case takes the following kind, is selected.

In numerical experiments that use models based on the chemical composition

the noise can be expressed only in the change of the respective components. It is
X

. . . Ai =— .
assumed to express noise A in the following way k- where further calculations
are made for k equal to 100 and 70.

Here %iis the mean value of relevant variable "i".

A(53,7)

1(27,6) F(27,53)
——

Fig.*. Organizing experiments with parametric planning with matrices I, A
and F
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For level "1” of I (27,6) noise is subtracted from relevant *i taking the value
of X~ With level "2" no correction is applied, the value of *iis preserved. With

level "3" noise is added to relevant *itaking the value of* *A ' In numerical
experiments where models based on chemical composition are used, noise can be
expressed only in the change of the respective components. Noise A is assumed
_X

~ k, where the further calculations are made for k

to be expressed as follows

equal to 100 and 70. Here % is the average value of the respective variable "i".

In level "1" 1 (27,6) noise is subtracted from respective *

X

i taking the value of
=4 In level "2" no correction is applied, the value of *iis preserved. In level

"3" noise is added to respective *i taking the value of % * A
Thus, noise is formulated in the change of chemical composition. The
calculation process is organized as follows:

A row of matrix | (27,6) is taken (for example, row 1 - | (1,6)). In this row
level "1" is assigned for each x;, i.e. noise will be taken out from each value x;.

Thus F (1,1) of the matrix F (27,53) is obtained from the first row of A (53,7).
The same rule is applied to the rest of the series F (53,6) and it forms F (27,53).

It is continued with the next row of matrix | (27,6) performing the following
sequence.

Each row of matrix | (27,6) forms a relevant row of matrix F (27,53).
Calculations are performed according to the following algorithm.

If we take the first column of matrix I (27,6) relevant to Xj, it is evident that
the first nine rows correspond to level "1" of noise, the second nine lines
correspond to level "2" and the third nine rows correspond to level 3" of noise.
This makes possible to use the values of the first nine rows of matrix F (27,53) to
calculate level "1", to use the second nine rows to calculate level of "2" and the
third nine rows for calculation at level "3" for X;. For other columns from 2 to 8
it is necessary to sort in ascending order Xi from 1(27,6). After sorting the column
obtains the kind of the first column.
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Far each celumn of the initial matriz the
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K — minimal value

.:':'n“.- MEXIME Wil L
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Fig. 2. Computational algorithm



34

After sorting of the respective variable, calculations for different levels can
be made. It is continued with the next matrix row | (27,6) performing the
following sequence. Each row of matrix | (27,6) forms a corresponding row of
matrix F (27,53). If we take the first column of matrix | (27,6) corresponding to
the X3 , one can see that the first nine rows correspond to noise level "1" of noise,
the second nine rows correspond to level "2" and the third nine rows correspond
to noise level "3". That allows using the values of the first nine rows of matrix F
(27,90) to calculate level 1", the second nine rows to calculate level "2" and the
third nine rows to calculate level "3" for X;. For the rest columns from 2 to 6 it is
necessary to sort by ascending order of Xi of 1(27,6). After sorting the column
takes the kind of the first column. With sorting, if shifts are made, they are
reflected in matrix F (27,53). After sorting the corresponding variable it is
possible to make calculations for different levels.

In the numerical experiment noise was first determined with K=70. The
analysis of the graphics shows low sensitivity for both Rm and A. In these
calculations, as shown in the Table 4.

The conclusion that can be made for the tensile strength — Rm is that all the
factors have a significant effect on aluminum, manganese, zinc and nickel and it
Is expected they to change in the direction of decreasing values, and copper and
silicon to increasing values. About the results for the relative elongation — A, from
all six variables two of the variables — nickel and silicon — should not be changed,
and the rest of the variables — aluminum, manganese, zinc and copper — need to
change in the direction of increasing their value. As the experiment is numerical,
it is possible to perform numerical optimization with the mathematical models
obtained as the values of X; are remained to change within the limits defined by
the output data (Table 1). The circumstance that some of the variables remain
unchanged, i.e. they keep their initial values, imposes the necessity to separately
carry out optimization for the chemical composition of each alloy. As a method
of optimization, the method of Hook and Jives was chosen. This method is
characterized as one of the best to solve problems with different parameters of the
goal functions. Specifically, the tensile strength Rm is changed from X, X;, X,
X4, X5 and Xg, and the relative elongation is varied from Xj, Xz, X3 and Xa.
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Table 4. Levels of noise factors for the research parameters

Variable Element Noise level
of Rm A
composition

X1 Al 1 3

X Mn 1 3

X3 Zn 1 3

Xy Cu 3 3

Xs Ni 1 2

Xe Si 3 2

The fact that one of the variables does not change, i.e. they preserve their initial
values requires optimization to be performed separately with chemical
composition for each alloy. The ones mentioned, Xsand X, are maintained at
their level, but are held by changing the rest. In this way, 53 optimizations are
performed, with each case obtaining a separate value of the extremum. Then all
maxima are sorted in ascending order and the largest is selected. With the values
of the variables of the relative elongation, the value of the tensile strength Rm is
calculated. Thus, the two-criteria approach is implemented. The optimal
composition is shown in the table.

Such an approach is justified because the task, if viewed from the point of
view of technology, is that individual optimization is the refinement of a separate
actual alloy.

Optimization in this way coincides with the approach of searching for a
global extremum from a set of starting points.
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This outcome indicates that the task is feasible and the approach applied
can result in improvement of the alloy composition.

Conclusion

The numerical experiment has proved the ability to improve the quality
of magnesium alloy of a certain class. Mathematical models suitable for
forecasting and optimization have been derived. The approach of  Taguchi
applied has lead to a desired result, to separate variables Xi for the examined
parameters that do not influence significantly on the final result. With this limit,
the numerical optimization for maximum search has been conducted with each
chemical composition. That allows improving it. Relative elongation A turned to
be less variable index and tensile strength Re requires caution with extreme
selecting. The decision of bi-criteria problem set has been defined thus proving
that the Taguchi approach is applicable to a similar class of problems.



Activity Based on Experimental

37

Results Obtained for the
Relationship between Grain Size and Mechanical Properties

Data have been obtained from DUT University (KJ%E38 T KX%) to establish the relationship
between the grain size and the properties of manganese alloys.. The available data base is shown

in Tabl.1.

Tabl.1. Experimental observations about the grain size from the properties

S'G rain Tensile Strength Yield Strength Elongation(%) Hardness
ize (nm) (MPa) (MPa) (HB)
142,9 173 1 56,5
111,6 199,4 11 71,8
92,5 2105 1,2 74,9
85,1 220,2 13 79,9
63,2 220,1 14 80,4
86,1 2219 13 78,2
100 180 95 33 61
48 208 107 35 69,5
30 227 114 38 76,3
23 243 125 4,95 83,1
14 261 134 54 92,5
26 229 117 4,1 85,6
200 197,50 80,40 9,90
160 207,30 81,30 12,40
330 190,00 78,00 8,90
420 185,00 75,00 12,90
380 190,00 85,00 13,70
300 195,60 83,10 14,30
450 183,00 72,00 11,30
86 158 1,2 570
65 180 14 660
50 212 16 790
320 126 72
178 142 8,7
96 156 95
50 171 11,2
212 160,07 383
135 192,97 6,5
108 195,46 6,5
76 2183 743
98 206,76 7,33
212 181,00 9,20
140 210,00 18,30
280 105 84
118 138 12,3
115 141 13,5
110 156 13,6
124 137 13,2

comment

AZ91D

AZ31

AZ31

AZ31

AZ31

AZ63B

AZ91

AZ91

AZ91
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The following relations have been formulated:

UTS(grain) = 233.2124234123008 - 0.930646578106493-grain + 0.003033869649217 grﬂin2 - U.GUU[I[IZTSBIM?ESI[I[I?-grah13

TSN (grain) = 263.97911244 - 131491238 grain - 0.00740957334-grain - 0.0000153087-grain = 0.000000017437149-grin

Afgrain) = 2.04361825424 + 0.039776211581257 grain - 0.00015323147316733-grainz + 0.0000001575652411338-grah13

Al(grin) = 3.40900507916 + 0.00603139273899 grain + 0.0004008642895-gmmz - [I.[Il][l[l[llSI]';’ISS?"';’-grain3 + [I.I][I[I[I[}[I[II}ZZ[IS[IIS';’SES-grain4

Fig. 1. Dependencies of tensile strength and relative elongation of grain size
(third and fourth degree models)

With the help of specialized software, the aforementioned dependencies were
obtained . In Fig. 1 and 2, polynomial approximations of the third and the fourth
are presented, on the basis of which a generalized pattern of the grain size
relationship was later constructed depending on the tensile strength and the
relative elongation. As can be seen from the graph, the dispersion is too large, but
the patterns are too high for determinations and can be useful as an initial
approximation within the project.

300
250 .
UTS(grain) y wal?
s N\ e
UTS1(grain) \ A i w4
. P, . ‘F/
L ‘K\-‘-
150
h -
100 :
0 100 200 300 400 500
grain

Fig. 2. Approximating dependencies of the tensile strength on the grain size
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20
15
- .
A(grain) * L
Aexper 10 r d:#_____,....- ',--"""'-‘-—_"
Al(grain) / . °
P e y
S L ]
LR L
0
0 100 200 300 400 500

grain

Fig. 3. Aproximating dependencies of the relative elongation on the grain

size
0 0 0
0 14 0| 240.49 o| 2853
1 23 1| 232919 1| 334
2 26 2 | 230.497 2| 3.499
3 30 3| 227.348 3| 3.705
4 48 4| 214.263 4| 4579
3 50 5| 212916 5| 4871
6 50 6| 212.916 6| 4671
7 63.2 7| 204545 7| s.251
8 65 8 | 203.473 8| 5327
g 76 g | 197.283 9| 5773
10 85.1 10| 192.565 10 6.12
11 86 11| 192,121 11|  6.153
grain = | 2 86.1 12| 192.072| Aflgrain) =151 g157
13 92.5 13| 189.029 13|  6.389
14 96 14| 187.443 14|  6.511
15 98| UTS(grain) = 15| 186.561 15 6.58
16 100 16| 185.697 16| 6.648
17 108 17| 182.416 17|  6.913
18 110 18| 181.639 18|  6.977
19 111.6 19| 181.029 19  7.027
20 115 20| 179.769 20| 7.133
21 118 21| 178.697 1| 7.225
22 124 22| 176.663 22| 7.402
23 135 23| 173.305 23 7.71
24 140 24| 171.932 24|  7.843

Fig. 4. Numeric values calculated by the models
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Fig. 5. Interpolation and approximation [dependencies] of the tensile
strength on the grain size

0 100 200 300 400 500

Fig. 6. Interpolation and approximation dependencies of the relative
elongation on the grain size
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The interpolation dependence of the tensile strength UL1(t) on the relative
elongation A2(t) shown on Fig.5 and 6 is a demo[nstration] possibility that can be
used in the future. Exact values can be determined for these interpolations. They
are presented in Fig.7.

t= Ul(t) = A2(1) =
15 261.213 4.052
23 236.6 6.03
33 208.233 5.263
45 197.971 3.743
a3 200,727 2.625
63 205.879 2.333
73 200,177 2.885
83 199.736 4.081
a5 188.768 2.623
105 177.306 7.227
115 169.133 8.645
125 166.478 9.72
135 169.544 10.372
145 176.739 10.5932
155 185.434 10.455
165 192.624 10.041
175 195.888 0462
185 193.831 8.853
195 186.334 8.305
205 174,48 7.83
215 160.225 7.637
225 145.926 7.613
235 133.834 F.7538
245 125.654 8.034
235 122.264 8.392

Fig. 7. Numeric values of presented interpolations.

According to an expert opinion for a further application, it is suggested to use the
data from Fig. 4.

Another possibility is to solve an optimization problem with both tensile strength
and relative elongation properties. For this purpose, regression relations were
obtained/output in coded units of the grain size in the range [-1; +1].

Coding is done according to the dependencies
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_ (bmin + bmax) (b —bio)

bio W := bmax — bio bkod =

Decoding is done using the formula.

bdekod := w-bkod + bio

The obtained /output models in coded values are as follows

d=-1..1

UTS(d) := 161.025 + 1.45003-d + 52.0744-4% - 28.9147.4°

A(d) = 9.63236 + 3.09638-d - 2.06551-d° + 1.60349-a°

In order to analyze the two properties, normalization is performed for their
values. This operation brings them to the same percentage scale.

(UTs(a) - 161.025)-100

UTS d) =
) = 1056~ 161.025)

A n(@) (A(d) - 2.8669)-100
n =
- (12.2667 - 2.8669)

n [%] 100 —
90 S
80 -
70

UTS_n(d) .

-

100 200 300 400 d [um]

Fig. 8. Normalized values of the explored properties strength and elongation on
the grain size
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A polynomial model with a very high coefficient of multidimensional correlation
Is plotted for the yield trend depending on the grain size

Re(grain) = 136.8196898482 — 0.676636677879-grain + 0.002569418604?-gram2 - 0.000003086765190?65-grah13

140
o
120 %
o
Re(grain)
o0 100
Reexp !
@ o 4
80 = 5
ol
60
0 100 200 300 400 s00

grain

Fig. 9. Graphical interpretation of the relationship between the
experimental and predicted values of the yield trend on the grain size

0 0 0

0| 14 0| 127.842 0| 134
1| 23 1| 122.579 1| 125
2| 26 2| 120091 2| 17
3| 30 3| 11875 3| 114
4| 48 4| 10992 4| 107
erain < | 3 | 100 Re(grain) = |9 | 91763]  Reexp= |3 95
6| 380 6| 81.345 6 85
7 | 300 7| 81734 7| 831
8| 160 8| 81.692 8| 813
9 | 200 9| 79.575 9| 804
10| 330 10] 8241 10| 78
11| 420 11|  77.185 1| 75
12| 450 12| 71359 12| 72

Fig. 10. Numeric values calculated by the model and the experimentally
determined values of the yield strenth
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Fig.11 to Fig.22 show most of the possibilities for displaying the raw data in
Table 1.

3D Contour Plot of grain against UTS and A
Sheetl in Gr_UTS_A 3v*38c

grain= Spline
20

18%

16

14

12

o]

o

n

N

— 420
— 320
— 220

120

'/ 20

80 100 120 140 160 180 200 220 240 260 280 -igo

uUTS — -280

o

Fig. 11.

The grain size in the mold matrix is a consequence of the processing mode
conditions. The corresponding structure determines the properties. Figures 11-13
show different capabilities of tool Statistica to display the independence of the
mean grain value and the expected values for strength and relative plasticity. Fig.
11 is a contour image, and Fig. 12 and 13 are three-dimensional images. These
graphs are entirely based on the experimental results provided. They do not
express a particular pattern.

3D Wafer Plot of grain [mkm] against UTS [MPa] and Elongation [%)]
Sheetl in Gra_UTS_A 3v*38c
grain [mkm] = Wafer
20

18

16

14

Elongation [%]
B =
o N

©

Il > 440
Il <420
Il <320
0 [1<220

80 100 120 140 160 180 200 220 240 260 280 g <120

UTS [MPa] I <20

Fig. 12.
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3D Wafer Plot of grain [mkm] against UTS [MPa] and Elongation [%]
Sheetl in Gra_UTS_A3v*38c
grain [mkm] = Wafer

Bl > 440
Bl <420
B < 320

80

[1<220
100 120 140 160 180 200 220 240 260 280 (0.

UTS [MPa] Bl <20

Fig. 13.

Pie Chart of grain [mkm]
Sheetl in Gra_UTS_A 3v*38c

(400;450]

](350;400]

(300;350
(250;300]

(200;250]

(150;200]
(50:100]

(100;150]

grain [mkm]

Fig. 14.
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Pie Chart of UTS [MPa]
Sheetl in Gra_UTS_A 3v*38c

(240:260p 260(100;120]

(120;140]
(220;240]

(140;160]

(200;220]
(160;180]

(180;200]

UTS [MPa]

Fig. 15.

Pie Chart of Elongation [%)]
Sheetl in Gra_UTS_A 3v*38c

(14;16](18;20]

(12;14]

(10;12]
(24

(4,6]

(6;8]

Elongation [%]

Fig. 14 - 16 show groups of values at specified intervals, respectively, for
the grain size, the strength and the relative elongation. This is a direct
representation of the table data for each type of the parameters. Fig. 17 shows the
three groups of parameters in total, with the observation number on the abscissa
axis, and on the ordinate axis the value of the parameter in a common scale of the
different dimensions.
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Bar/Column Plot of multiple variables
Sheetl in Gra_UTS_A 3v*38c

500

450

400

350

300

250

200

150

100

O[L{{{ ’7-"7’7|‘\| Dllnllblln AT A AR Ul Rttt DUTS[MP&]

50
{ I grain [mkm]
1 3 5 7 9 111315 17 19 21 23 25 27 29 31 33 35 37 39 [ Elongation [%]

Fig. 17.

Fig. 18 and 19 present the tabulated data for the strength and the relative
elongation as dependent on the grain size. Package Statistica can determine which
values of the ones presented are of very large scattering. This can be accounted
for by the represented figures respectively. These values can be excluded in the
modeling process and thus the model’s importance will be improved. Excluding
the values is for those with the greatest deviation from the initial approximation,
and this exclusion is done symmetrically to this approximation.

Bag plot of UTS [MPa] against grain [mkm]
Sheetl in Gra_UTS_A 3v*38c
280
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Fig. 18.
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Bag plot of Elongation [%)] against grain [mkm)]

Sheetl in Gra_UTS_A 3v*38c
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The table shows the characteristics of the best approximations obtained
with neural models among 2000 analyzed networks. This is an opportunity for the
Statistica package. In Fig. 20 shows the comparison of five networks between
experimental and modeled values. The Statistica package allows for a selected
approximation to create a code that can later be used for embedding into software.

Summary of active networks (Sheetl in Gr_UTS)

Ind| Net. | Training | Test |Validation| Training | Test |Validation| Training Error Hidden Output

ex [ name | perf. | perf. perf. error | error error algorithm | function | activation | activation
1M1 0659207 %495 0660885 351,9700*% 0% 2612349 BFGS209|  SOS|  Logistic]  Logistic
oM 10652303 %07Y 0 680405| 357,7484| ®02 2516479 BFGS15|  sos Tanh|  Logistic
3" 110619102 %% 0,650030] 394,2077| 12 2084738 BFGS4|  sOs|  Tamh  Logistic
4 MLPZ_ll' 0,659019 0'5112 0,679721| 352,2023 487;; 2648800 BFGS34  SOS|  Logistic Tanh
5" 1 0.650045 1) 0.679060] 3520528 ") 267,606  BFGS31|  sOS|  Logistic  Logistic
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tensile strength(MPa) (Target) vs. tensile strength(MPa) (Output)
Samples: Train

260 ————————— ,
250 t ]
240 ¢ .
230 ¢ 1
220 ¢ i
210 ¢ .
200 ¢ ]
190 ¢ i
180 1 .
170 | ]
160 | ]

150 | 1 © 1LMLP131

80 100 120 140 160 180 200 220 240 260 280 AMLP 1-2-1

90 110 130 150 170 190 210 230 250 270 o 5MLP 1-3-1

tensile strength(MPa) (Target) ==Y

Fig. 20.

In the table, the experimental strength observations are compared to the
five obtained models.

Predictions spreadsheet for tensile strength(MPa) (Sheetl in Gr_UTS) Samples: Train

‘(a: ® tensile tensile strength(MPa) | tensile strength(MPa) | tensile strength(MPa) | tensile strength(MPa) | tensile strength(MPa)
na | strength(MPa) - Output - Output - Output - Output - Output

me Target 1. MLP 1-3-1 2. MLP 1-2-1 3. MLP 1-5-1 4. MLP 1-2-1 5. MLP 1-3-1

2 261,0000 245,1128 240,4375 244,7512 245,9238 247,1279
3 243,0000 236,7967| 234,5246 239,7705 236,7593 237,6811
4 229,0000 233,6752 232,2201] 237,8340 233,3864 234,1214
5 227,0000 229,3370 228,9094 235,0430 228,7663 229,2117
6 208,0000 209,6608 211,9309 220,1630 208,6751 208,0039
8 171,0000] 207,6507| 209,9993 218,3705 206,6868 205,9548
9 220,1000 196,0144 198,1466 206,6555 195,3410 194,5358
10 180,0000] 194,6618 196,7045 205,1262 194,0376| 193,2564
12 220,2000 183,1086) 184,1045 190,3486 183,0164 182,7077|
13 158,0000] 182,7258 183,6856, 189,8011 182,6547 182,3690
14 221,9000 182,6839 183,6398 189,7409 182,6151] 182,3319
15 210,5000 180,2424 180,9819 186,1471 180,3136) 180,1850
16 156,0000] 179,0918 179,7416 184,3923 179,2325] 179,1804
19 195,4600] 175,9673 176,4365 179,4093 176,3074 176,4663
20 156,0000] 175,5517| 176,0060 178,7200 175,9192 176,1054
21 199,4000 175,2379 175,6827| 178,1947 175,6262 175,8327|
22 141,0000 174,6224] 175,0532, 177,1521 175,0514 175,2966)
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23 138,0000] 174,1331] 174,5574 176,3102 174,5942 174,8689
24 137,0000] 173,2886 173,7120 174,8257 173,8035] 174,1249
25 192,9700] 172,1234 172,5673 172,6860 172,7024 173,0741]
27 173,0000] 171,5255 171,9875 171,5182 172,1253 172,5113
28 207,3000 170,7094 171,1863 169,7244) 171,2925 171,6687|
31 160,0700] 170,2007| 170,4176 166,8979 170,4050, 170,6322
32 181,0000 170,2007| 170,4176 166,8979 170,4050, 170,6322
33 105,0000] 170,7509 170,3002 163,3073 170,2377 170,2902
36 190,0000] 171,2235 170,2918 159,6458 170,2225 170,1930,
37 190,0000] 171,6389 170,2905 155,3821 170,2197 170,1358,
38 185,0000] 171,9239 170,2904 151,7703 170,2192 170,1054

The product allows the network to be stored in a code for future use. Below is a

sample code selected for a given network.

/IAnalysis Type - Regression
#include <stdio.h>
#include <conio.h>
#include <math.h>
#include <stdlib.h>

double Sheetl in_Gr_UTS_1 MLP_1 3 1_input_hidden_weights[3][1]=

{

{-1.22080769298642e+001 },
{1.79676014160609¢-001 },
{-1.46264349811217e+000 }

h

double Sheetl_in_Gr_UTS_1_MLP_1_3 1_hidden_bias[3]={ -1.02738121460061e+000, -4.35761042008986¢-

001, -3.63720686592803e+000 };
double Sheetl in_Gr_ UTS 1 MLP_1 3 1 hidden_output_wts[1][3]=

{
{9.95764555530247e+000, -8.93541475553883¢-002, -8.46173922682036e+000 }
%

double Sheetl_in_Gr_UTS_1_MLP_1_3_1_output_bias[1]={ -1.95680571951655e-001 };

double Sheetl_in_Gr_UTS_1_MLP_1_3_1_max_input[1]={ 4.20000000000000+002 };

double Sheetl_in_Gr_UTS_1_MLP_1_3_1_min_input[1]={ 1.40000000000000e+001 };

double Sheetl in_Gr_ UTS 1 MLP_1 3 1 max_target[1]={ 2.61000000000000e+002 };
double Sheetl in_Gr UTS 1 MLP_1 3 1 min_target[1]={ 1.05000000000000e+002 };

double Sheetl in_Gr_UTS_1 MLP_1 3_1 input[1];
double Sheetl in_ Gr_ UTS 1 MLP_1 3 1 hidden[3];
double Sheetl in_Gr_UTS 1 _MLP_1 3 1 output[1];

double Sheetl in_Gr_UTS 1 MLP_1 3 1 Meaninputs[1]={ 1.32978571428571e+002 };

void Sheetl_in_Gr_UTS_1 MLP_1 3 1 Scalelnputs(double* input, double minimum, double maximum, int

size)

double delta;
long i;
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for(i=0; i<size; i++)

{

delta = (maximum-minimum)/(Sheetl_in_Gr_UTS 1 MLP_1 3 1 max_input[i]-
Sheetl_in_Gr_ UTS_1 MLP_1 3 1 min_input[i]);

input[i] = minimum - delta*Sheetl_in_Gr_ UTS_1 MLP_1 3 1 min_input[i]+ delta*input[i];

}

}

void Sheetl in_ Gr_UTS_ 1 MLP_1 3 1 UnscaleTargets(double* output, double minimum, double maximum,
int size)

double delta;
long i;
for(i=0; i<size; i++)

delta = (maximum-minimum)/(Sheetl_in_Gr_UTS 1 MLP_1 3 1 max_target[i]-

Sheetl in Gr_ UTS 1 MLP_1 3 1 min_target[i]);
output[i] = (output[i] - minimum + delta*Sheetl_in_Gr_UTS 1 MLP_1 3 1 min_target[i])/delta;
}

}

double Sheetl_in_Gr_UTS_1 MLP_1 3 1 logistic(double x)

if(x >100.0) x = 1.0;

else if (x <-100.0) x =0.0;
else x = 1.0/(1.0+exp(-x));
return Xx;

}

void Sheetl_in_Gr_UTS_1 MLP_1 3 1 ComputeFeedForwardSignals(double* MAT_INOUT,double*
V_IN,double* V_OUT, double* V_BIAS,int sizel,int size2,int layer)
{

int row,col;
for(row=0;row < size2; row++)

V_OUT[row]=0.0;
for(col=0;col<sizel;col++)V_OUT[row]+=(*(MAT_INOUT+(row*sizel)+col)*V_IN[col]);
V_OUT[row]+=V_BIAS[row];
if(layer==0) V_OUT[row] = Sheetl_in_Gr_UTS_1_MLP_1_3 1 logistic(V_OUT[row]);
if(layer==1) V_OUT[row] = Sheetl in_Gr_UTS 1 MLP_1 3 1 logistic(V_OUT[row]);
}
}

void Sheetl in_Gr_UTS 1 MLP_1 3 1 RunNeuralNet_Regression ()
{

Sheetl in_Gr_UTS_1 MLP_1 3_1_ ComputeFeedForwardSignals((double*)Sheetl_in_Gr_UTS_1 MLP_1 3
1_input_hidden_weights,Sheetl_in_Gr_UTS_1 MLP_1 3 1 input,Sheetl_in_Gr_UTS_1 MLP_1 3 1 hidden
,Sheetl in_ Gr_ UTS 1 MLP_1 3 1 hidden_bias,1, 3,0);

Sheetl _in_Gr_UTS_1 MLP_1 3_1_ ComputeFeedForwardSignals((double*)Sheetl_in_Gr_UTS_1 MLP_1 3
1 hidden_output_wts,Sheetl in_Gr_UTS 1 MLP_1 3 1 hidden,Sheetl in_Gr_UTS 1 MLP_1 3 1 output,S
heetl_in_Gr_UTS 1 MLP_1 3 1 output bias,3, 1,1);

}

int main()

{ .
int cont_inps;
int i=0;
int keyin=1;
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while(1)
{
printf("\n%s\n","Enter values for Continuous inputs (To skip a continuous input please enter -9999)");
printf("%s","Cont. Input-0(grain size(?m)): ");
scanf("%Ig",&Sheetl_in_Gr_UTS_ 1 MLP_1 3 1 input[0]);
for(cont_inps=0;cont_inps<1;cont_inps++)
{
/[Substitution of missing continuous variables
if(Sheetl_in_Gr_UTS_1_MLP_1 3 1 input[cont_inps] == -9999)
Sheetl_in_Gr_ UTS_1 MLP_1 3 1 input[cont_inps]=Sheetl in_Gr_UTS 1 MLP_1 3 1 Meaninputs[cont_in
ps];
}

Sheetl in_Gr_ UTS_1 MLP_1 3 1 Scalelnputs(Sheetl in_Gr UTS 1 MLP 1 3 1 input,0,1,1);
Sheetl in_Gr_ UTS_1 MLP_1 3 1 RunNeuralNet_Regression();
Sheetl in_Gr_UTS_1 ML

P 1
P_1 3 1 UnscaleTargets(Sheetl in_Gr_ UTS 1 MLP_1 3 1 output,0,1,1)

printf(*\n%s%.14e","Predicted Output of tensile strength(MPa) =
",Sheetl_in_Gr_UTS_1 MLP_1_3 1 output[0]);
printf(*\n\n%s\n","Press any key to make another prediction or enter 0 to quit the program.");
keyin=getch();
if(keyin==48)break;

return O;

The figure shows the program codes in which the program can record the
neural model. What needs to be done is the user to indicate an approximation that
suits him / her.

{253 SANN - Results: Sheet2 in GR_A.stw ? x|
Active neural networks
Met I MNet. name Training perf. Test perf.  Validation perf.  Algorthm Error funct
1 MLP 1-2-1 0465115 0328231 0.776560 BFG5 5 S05
2 MLP 1-6-1 0.465253 0418237 0777297 BFGS 4 S05
3 MLP 1-6-1 04650716 0,328555  0.777003 BFGS 5 505
A WP A2 M ATNIET N241611 N 77RRAZ RESE 2 [=el w
< >
ZE Select\Deselect active networks ZE Delete networks
Build models with CNM Build models with ANS Build models with Subsampling
Predictions ‘Graphs ] Details ] Custom predictions
[Eo]
Predictions spreadshest Summary
Predictions type Include Save networks™ |
(®) Standalones ] Inputs [] Absclute res. PMML
(") Ensemble Targets [ 5quars res. C/Ce+
(") Standalones and enssmble Cutput (] Standard res. c#
(] Residuals Wariables
Java
i Predictions Confidence intervals Sac
S0L stored procedure in C#
S0L User Defined Function in C#
Teradata

i 200 200 SO0 tell] 400 400 SU0

arain sizel?m) (oot

Deployment to STATISTICA Enterprise
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UTS [MPa] (Input), Elongation [%] (Input), grain [mkm] (Target)
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B <-320

The selected model can be visualized. The visualization can track the
difference between model values and experimental values. Below are various

analyzes that the Statistica package performs. Analyses can provide the expert
with an assessment of the selected model.

Predictions statistics (Sheetl in Gra_UTS_A) Target: grain
[mkm]
Statistics 3.MLP 2-6-1
Minimum prediction (Train) 26,702
Maximum prediction (Train) 445,367
Minimum prediction (Test) 30,925
Maximum prediction (Test) 270,279
Minimum prediction (Validation) 68,451
Maximum prediction (Validation) 450,000
Minimum prediction (Missing)
Maximum prediction (Missing)
Minimum residual (Train) -65,367
Maximum residual (Train) 49,660
Minimum residual (Test) -7,925
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Maximum residual (Test) 49,721
Minimum residual (Validation) -150,000
Maximum residual (Validation) 16,649
Minimum standard residual (Train) -3,923
Maximum standard residual (Train) 2,980
Minimum standard residual (Test) -0,354
Maximum standard residual (Test) 2,223
I(\/I\/l:lli?:trig r?;[andard residual 2,762
l(\<|/1>|(i|(rj1;l:ir(1)1ns)tandard residual 0,307

Data statistics (Sheetl in Gra_UTS_A)

UTS [MPa] Elongation [%] grain [mkm]

Samples Input Input Target
Minimum (Train) 105,0000 1,10000 14,0000
Maximum (Train) 261,0000 18,30000 450,0000
Mean (Train) 185,9357 7,69964 151,5429
Standard deviation (Train) 35,2359 491550 118,3861
Minimum (Test) 126,0000 1,00000 23,0000
Maximum (Test) 243,0000 7,20000 320,0000
Mean (Test) 188,4200 3,57000 129,8200
Standard deviation (Test) 45,2425 2,57235 115,1928
Minimum (Validation) 171,0000 1,30000 50,0000
Maximum (Validation) 220,2000 14,30000 300,0000:
Mean (Validation) 195,9520 8,64000 148,6200
Standard deviation (Validation) 46,4921 4,86237 135,2162
Minimum (Missing)
Maximum (Missing)
Mean (Missing)
Std (Missing)
Minimum (Overall) 105,0000 1,00000 14,0000
Maximum (Overall) 261,0000 18,30000 450,0000
Mean (Overall) 187,5805 7,28000 148,3000
Standard deviation (Overall) 34,2301 4,82246 113,2396
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Correlation coefficients (Sheetl in Gra_UTS_A)
grain [mkm] grain [mkm] grain [mkm]
Train Test Validation
3.MLP 2-6-1 0,979926 0,989246 0,964357

Parameter Estimates (Sheetl in Gra_UTS_A) Sigma-restricted parameterization

grain | grain | grain | grain (95,00 +83(;0 grain | grain [95,00 +805/(’)O
[mkm] | [mkm] | [mkm] | [mkm] | % CnfL [mkm] | [mkm] | % CnfL
Param. | Std.Err t p Cnf. mf Beta (?) | St.Err.? | Cnf. mf
Effect Lmt Lmt
Intercept 311,856 500,463] 0,62314| 0,53761[707,54 1331,
UTS [MPa] 0,2080 |4,7425 | 0,04386| 0,96528]-9,454 9,868] 0,06288] 1*33°9 2,85 [2,982
UTS[MPa]"2 | -0,0078] 0,0116/-0,6733 | 0,50559]-0,03] 0,016| -0,8672] 1,28800| -3.49] 1,756

Elongation [%] -25,659| 28,1819 -0,9104| 0,36937 31,74) -1,0927| 1,20016| -3,53| 1,351

83,064
Elongation [%]*2 | -0,8080| 0,7354| -1,0987| 0,28009|-2,30¢ 0,690| -0,5654| 0,51462| -1,61| 0,482
UTS

[MPa]*Elongation | 0,2510] 0,1390| 1,80545| 0,08042|-0,032 0,534| 1,93887| 1,07389| -0,24| 4,126
[%]

CONCLUSION

This generalized research is devoted to numerical approaches to identify
effective solutions in the field of magnesium alloys. Approaches to obtain the
optimal combination of chemical composition and heat treatment to achieve
certain properties are of fundamental importance for the realization of an effective
project. They are at the basis to design or improve new alloys and the associated
with them costs.

The research of the genome of the material in this generalization of
publications, relies entirely on statistical processing and it is aimed at creating
opportunities for predicting the mechanical parameters as a function of the
chemical composition and the heat treatment parameters taking into account the
relevant boundary conditions.

To determine how to deal with the issue of improving the properties of the
chemical composition and processing through the methods of modeling and
optimization, in [1] there were considered methods for preparation of alloys.
Multiparametric regression analysis is one of the most popular methods for data
processing. It has been applied successfully in the research of a set of relations in
the metallurgical industry. Due to the nature of each statistical analysis, the
coefficients of the restrictions caused by the regression analysis are known only
approximately.
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In this respect, competing metallurgical companies develop software tools and
approaches, supporting their work in finding rational solutions on the final
properties of the products. It is impressive in the analysis of the bibliography
about the simultaneous improvement of the strength and the ductility that alloying
or processing parameters do not guarantee much data. This fact in the subsequent
studies should be considered for the creation of mathematical models to analyze
the objects for the observed metallurgical process. This is an important motive in
the implementation of future targets for research relevant to a new generation of
steels.

Automated design of the composition and the procedures of processing ferritic
steels of all generations is possible to realize with modern computing resources.
The innovation of these technologies for the production of new generations of
steel and also the widespread use of modern materials, are important for the
economic development and for the ways to increase security, too.

The approbated approach is realized at the methodical level.

The Creation of nonlinear analytical models for control of the properties,
depending on the chemical composition in the heat-treated condition. For this
purpose there has been developed a procedure and software for analysis of the
research parameters;

Multicriteria optimization realizes the possibility to achieve a compromise
between characteristics of contradictory trends.

Analysis and optimization of selected quality indicators

The first contribution to the ‘MGI’ is adaptation of the method of shifting
constraints for the purpose of multicriteria optimization.

Fig. presents a sample surface of the response for changing the quality
indicator due to depending on the values of the technological inputs .

—
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Fig.Graphical interpretation of single-criteria
optimization problem with two factors of change.
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The usual practice analyses such surfaces graphically via contour diagrams
determined by equilevel lines. Thus it is possible to determine graphically
coordinates of values for technological parameters with local or global maxima
or minima of the goal parameter.

The scalarization of the problem for MKVR passes through two stages:

- Making criteria dimensionless values (thus making them comparable);

- Constructing a generalizing function /filter/.

The general scheme of the approach and the algorithm of this a priori approach
Is presented in Material Science area.

A single- criteria problem is solved unifying criteria according to a determined
dependency on the basis of which a non-dominated solution is obtained.
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APPLICATION

Essence and Mathematical Formalism to Manage Quality of Casting Processes of
Magnesium Alloys

Part 1/ Defining the Problem /

The technological processes and combinations of their parameters, causing defects
depending on the number of the explored quantities, are subdivided into single-criterion
and multi-criteria.

The single-criterion influences of technological factors on the goal function examines
one quality parameter associated with one defect. By examining a complex of properties
from the same input parameters, it is possible to determine that combination of input
parameters that provide exactly defined output parameter requirements.

From the set of defined optimally effective solutions it is possible to determine just one
(most advantageous) associated with lower energy or materials consumption.

In this presentation, the essence, ideas, and mathematical background of problems of
production quality management are developed. These principles are universal in all
processes, but the problems in the present material are oriented to magnesium alloys
treated by foundry processes.

The object of the study is magnesium alloys chosen because of their valuable properties,
which is why they find specific applications. The table lists the applications of specific
alloys.

Table 1. 2 - List of common Mg alloys and their applications

Name

Composition

Example Uses

(Balance Mg, wi%)

3% Al-1% Zn-0.20%Mn Aircraft fuselage, cell [71. [20]
phones, laptops
AZ91 9% Al-0.7 % Zn, 0.13 % Door mirror brackets, valve | [9], [20]
Mn and cam covers, die casting
AMS0 5% Al-0.13 % Mn trace Si | Steering wheel arm, seats [9]
AMG0 6% Al-0.13 % Mn Car seat frames, steering [9][20]
wheel, inlet manifolds
ZE41 4% Zn—1 % Nd Ballistics, aircraft parts [9]
QE22 2% Ag— 2% Nd Agrospace [21]
ZK 60 6% #n - =1 % Zr Military components, tent [9]
poles, sports equipment
WE 43 43% Y -3%RE-04% | Helicopter transmission, [22], [23]. [24]
Zr race car
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Valuable properties arise when compared to similar widespread materials. This is done
on the graph when comparing magnesium with aluminum and iron.

16.000 1
14.000 1 14,000 O Specific stiffness
' (Elastic modulus/density)
12081
12000 1 B Specific strength
(Tensile strength/density)
10.000 4
S 8.000 4
o
i
= 6.000 4
4,000 4
2585 2603
2.000 4
0 T v
Mg Al Iron

Figure 2- 1. Comparison of basic structural properties of magnesium with aluminum and
iron [6].

[6] M. K. Kulekei, Magnesium and its alloys applications in automotive industry, The
International Journal of Advanced Manufacturing Technology, vol. 39, no. 9-10

(MNNRY RS1-RAS

Applications of magnesium alloys are performed by two types of blanks: cast by
different methods and plastic deformed by different methods.

The figure shows the dependence of the properties on these two separate types of blanks.
In cast alloys there is a more pronounced contradiction between strength and plasticity,
which necessitates solving multi-criteria optimization problems.

With this optimization, it is possible to solve a compromise between both criteria in
terms of chemical composition, casting process and heat treatment
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Figure 9. Comparison of cast and wrought alloys [77]
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According to a research, magnesium alloys will continue to be important in the future,
both in the automotive and aerospace industries. Specific examples of applications in
the automotive industry are listed in the table.

1009 e
l . 20 Other
80 4 - I Magnesium
Aluminum
60 - J
€ (g Polymer/
g o W Compaste
< 4- Q B Wood
‘ HiMed
2 - &l Strength Steel
Low-Carbon
Steel
0 - T T T T 1

1906 1912 1977 Today Future

‘igure 1.2: The materials used in construction of a typical automobile over the past
century (Taub, Krajewski, Luo, & Owens, 2007).

Table 2.3. Potential applications for magnesium alloys in the automotive industry.

Application | Product Application | Product

Interior Airbag housing Body Door frame (Inner)
Window regulator housing Hatchback frame
Glove box Spare tyre jack

Chassis Wheel Powertrain | Automatic transmission case
Control arm Engine block, engine mount
Rack and pinion housing Crankcase
Bracket for rail frames 01l pan, o1l pump housing
Spare tyre rim Starter housing

Each product or quality process is characterized by one or several qualitative indicators.
For each product to be qualitative, each of these indicators must have a specified value
set to the standard.

Often it is called a target value. For a number of reasons, but not every product has the
exact target value of the quality indicator. Non-compliance with the technology and for
other reasons, deviations from the quality indicator from the target value appear. If these
deviations are within a defined range called tolerance limits, the product is considered
fit, otherwise it is defective.
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Table 1. Typical Mechanical Properties of Magnesium at Room Temperature
Property Unit | AZ91 | AMGO | AMS0 | AM20 | AS41 | A521 | AE42

Ulimate Tensile Strength MPa 240 225 210 1940 215 175 230
(250 [240) (230] (210] [(240) (220 | (230)

Tensile Yield Strength MPa 160 130 125 a0 140 110 145
[0.2% offset ) (160) (130 (125] (S0 (140) (120) (145)
Compressive Yield Strength | MPa 160 130 125 a0 140 110 145
Fractwre Elongation . 3 g8 10 12 G Q 10
(7) (13) (15) (20) (15) (13) (11)
Elastic Modulus, tension GPa 45 45 45 45 45 45 45
Elastic Modulus, shear GPa 17 17 17 17 17 17 17
Bringll Hardness 70 65 &0 45 &0 55 &0
Impact Strength ] G 17 18 18 4 5 5
Charpy un-notched test bars (9) (18] (18) (18) (1E) (12) (121

Mote: Valves in parentheses show mean propery values oblained from separaltely diecast est bars.

Table 2. Typical Physical Properties of Magnesium

Property Unit [Temp (F{ AZ91 | Am&0 | AM50 | AM20 | As41 | As21 |aE42
Density gfouem| 68 1.81 1.8 1.77 1.75 1.77 1.76 11.79
Liguidus Temperature F T.110 | 1,139 | 1,148 | 1.182 | 1.144 | 1.169 11157
Incipient Malting

Temperature F 788-975] 7T88-815) 7EE-815) 7E8-815] 788-B15] 728815 1094
Linear Thermal

Expansion Coefficient | pm/m | 68-212 26 26 26 26 26.1 26.1 | 261
Specific Heat of Fusion| kl/kg 370 370 370 370 370 370 ) 370
Specific Heat kl/kg*K] &8 1.02 1.02 1.02 1.02 1.02 1.02 | 1.02
Thermal Conductivity |W/K*m (532 51 61 65 04 (] g4 84
Electrical Conductivity | MS/m &8 6.6 nm 0.1 131 nm 10.8 111.7

The tables set out certain mean values of magnesium alloys that are most widely used
in practice. These data, coupled with other physical constants are staked in the
specialized software, for specific casting calculations.

Like any other material, magnesium alloys, in addition to advantages and limitations,
also exhibit disadvantages.

The idea is part of these deficiencies with alloying with different elements and different
treatments to be overcome.

In this case, the application options will be expanded.
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The disadvantages of magnesium alloys:

+ Low elastic modulus

+ Limited cold workability and toughness (hep structure)

+ Limited creep resistance at elevated temperatures (Tm = 650°C)

+ High degree of shrinkage on solidification (high thermal expansion)
« High chemical reactivity (free 3s? valence electron structure)

+ In some applications limited corrosion resistance (electrode potential v=-2.31 V)

Focus:
* To improve high temperature performance

» To improve corrosion resistance

However, any other effect appreciated by the manufacturer or the user of the alloy within
certain limits and measured according to a specified methodology of a relevant
dimension may be subject to investigation as necessary

Table 1. 1 - List of common alloy elements and their effect in Mg alloy systems

Element Alloy Designation Properties

Ag Q Improve elevated temperature [11]
properties and creep when present
with rare earths

Al A Improve castability, precipitation [11].[12]
hardeners produced, corrosion
protection

Ca X Grain refinement, improves creep [11],
resistance, improve high temperature | [13], [14]
properties

Rare Earths | E Improve creep resistance, castability, | [13], [15]

(Ce, La, Nd) grain refining, age hardening

Si S Improves creep resistance [13]

Sr J Improve creep resistance [14]

Mn M Purification [12]

Y W Improve tensile properties, grain [13]
refining

In Z Duetility and castability [13]

Zr K Grain refiner, purification [11].[12]
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Two major factors in alloys affect the value of the effect, property, criterion. It is the
combination of one or several alloying elements and the combination of the values of
the casting mode or heat treatment applied after the casting of the workpiece.

These two large sets of parameters are subject to formalization for a mathematical
description for forecasting and optimization. The table shows the impact of one of the
parameters on a Quality Score.

Different alloying elements have different effects on alloys on different bases.

The table shows the characteristic influences of individual alloying elements in certain
ratios in alloys of aluminum and magnesium.

Table 1. Effects of elements in the A356 and the AM60B alloys.

[wt%] A356 (Al1Si7TMg0.35) [wt%] AM60B (MgAl6Mn0.5)
S1 |6.5-75 |Increased fluidity <01 Improved creep strength, fluidity
Balance . 5565 Increased strength, hardness,
Al Primary element o
fluidity
Mg [0.25-0.45 |Increased strength Balance Primary element
e <02 ) ) ) < 0.005 Impurity, reduced corrosion
Fe Brittle AlsFeSi particles )
resistance
e |03 Aljs(Mn,Fe);8i, particles |0.25-0.6 Removes iron: Increased ductility,

[10] corrosion resistance

Ti, B [Ti<0.2 |Grain refinement - -

Sr 10.01 Modified Al-Si eutectic |- -

Zn [<0.1 Affects corrosion type (< 0.22 Increased strength, fluidity
Be |- - 0.0005-0.0015 |Minimize oxidation

Cu |<0.03 Impurity <0.01 Reduced corrosion resist.

"The A356 alloy composition depends on the batch; ~ Fe content is typically higher in HPDC to reduce die
soldering. 1t is necessary to keep the sludge factor (SF) low, i.e. SF = wt%Fe + 2wt%Mn + 3wt%Cr < 1 .75
1 1o avoid large intermetallic inclusions; *" Mn is added to improve the ductility.

The combination of one or several elements in different percentages determines areas of
certain qualities (properties). As an example, the properties of magnesium alloys doped
with zinc and aluminum are indicated.

They are explored according to certain methodologie, and each ratio of the determined
chemical composition corresponds to a precisely defined property value.

The value of the property may vary within a range depending on the conditions in which
the test sample was obtained.

In this sense, the chemical composition in terms of counts, the amount of doped elements
and process mode parameters are input parameters, varied as combinations, and the
property being tested is an output parameter.

Different states of input parameters give a different set of indicators.
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An example of the change of three target indicators / criteria and the scattering of the
research value around the mean and the importance of this value depending on the

change of zinc and alumina in magnesium alloys are presented as follows.
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The main criteria with which metal production can be qualified are the values of certain

strength characteristics.

The figure shows the values of two strength endpoints derived from three technological

methods.

The technological methods are applied to the same control values of the manufacturing

process.

The difference in values is explained by the presence or absence of foundry defects,
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such as a porosity that varies between different methods.
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[27] G. A. Chadwick and T. M. Yue, Squeeze casting of light alloys and their

composites, Journal of Materials processing technology, vol. 5, no. 1 (1991) 6.

Both the type of the method and the type of the alloy is influenced by the value of the
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Figure 8-1 The plot of as-cast UTS for squeeze cast (diamonds) and gravity die cast specimens

Gravity Die

(triangles) cast with constant process parameters (other than applied pressure).

There is no generalized approximation rule at once set parameters for an alloy or method

that can be automatically transferred to other alloys or similar methods.
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Figure 2- 8. Porosity levels of squeeze cast and die cast AM50 alloy [28].

[28] M. Zhou H. Hu, N. Li, and J. Lo, Microstructure and tensile properties of squeeze

cast magnesium alloy AMS0, Journal of materials engineering and

performance, vol. 14, no. 4 (2005) 539-545.

A proof of the influence of the method on the percentage defect is shown in the figure.

The defect is dependent on the conditions of crystallization and other technological
indicators. Not all of them are subject to formalization.

The porosity weakens the cross section and therefore reduces the strength. Pore control
can also be an output parameter.

The conditions under which the experiments are conducted have a significant effect on
the studied magnitude.

The results of the bibliographic research should be considered as average. For specific

production conditions, the normalization of the explored qualitative indicators according
to the applied practice is made.

Dissipation around the average is directly related to the quality of the process. Greater
distraction is a sign of a lower quality process.
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Table 5.5 Tensile strength and elongation of AM series Mg-alloy scrap recycled
with the MC-HPDC process and properties of fresh AMS0A and AMG0B alloy
castings reported in the literature, compared to the recycled AM-series alloy scrap

recycled in this study.

i UTs Elongation
Alloy Processing Reference
(MPa) (*a)
[Aune and Westengen
210 8.5 1992]
210 10 [Avedasian and Baker
1999]

AMS0A HPDC

275 5+33.5 6.947 1 [Song et al. 2008]

24157 12.0:2.1 [Ji et al. 2005]
[Avedasian and Baker
225 8 1990]
AMBOB | HPDC | 5i4iins | 9504 [Lee 2007(a)]
20584404 | 92455 [Lee 2007(c)]
HPDC | 230.9+172| 124234 Current study
AM series
scrap
MC-HPDC | 231.5+11.1 | 14.1%1.9 Current study

There are certain differences between experimental and calculated data due to the
imperfection of the computation process.

r b
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parameters - TR : = =
Modelling & Energy balance|t }I Energy eq. ||_> Temp.
B .| [representation
Modelling

J Solidification and cooling

Casting | —]
pocenes] 1 g (] [ o el ] Fema]

p balance conduction eq.
ﬂ analysis

Microstructure, —l S T
: Output ) Stress and strain
defects, quality and . = \l/l e ; T =
opeites o oeockit <: imulation CJ alance o “quilibrium | isp., stress
i results forces & eq. & state eq. = & strain

Figure 2. Association among the process. modelling, simulation and output variables.
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The specialized software can be used as a tool for obtaining statistics for the process
quality analysis.

The result of applied specialized statistical processing from simulations must be
confirmed in practice.

For the analysis of the process a qualitative indicator or a system of indicators to be
controlled is selected.

Table 1. Casting simulation programs

Software Program Company and Location

AutoCAST Advanced Reasoning Technologies P. Ltd., Mumbai
CAP/WRAFTS EKK, Inc., Walled Lake, Michigan, USA

CastCAE CT-Castech Inc. Oy, Espoo, Finland

Castflow, Castherm

Walkington Engineering, Inc., Australia

JSCast Komatsu Soft Ltd., Osaka, Japan
MAGMASoft MAGMA GmbH, Aachen, Germany
MAVIS Alphacast Software, Swansea, UK

Nova-Solid/Flow

Novacast AB, Ronneby, Sweden

PAM-CAST/ProCAST

ESI Group, Paris, France

RAPID/CAST Concurrent Technologies Corp., USA
SIMTEC RWP GmbH, Roetgen, Germany
SOLIDCast Finite Solutions, Inec., Illinois, USA

For a specific case, with a precisely defined filling and cooling scheme, simulations can
be made to model a given casting process.

These simulations are made with specialized software for foundry purposes. A list of
specialized software is shown in table and the diagram shows the interaction of the basic
modules in the research of various simulations of foundry processes.

l Part CAD Model ‘

v

Conceptual casting
process design

[ Casting Model H Castability Analysis

E-==-

Casting system
design

Casting Design

Castin, .
g Matrix

Design

1

|

| el

| Optimization

|
1

1

1

o
1
|
|
1
|

‘ Result Analysis ‘—:b

Figure 3.1 Computer aided system workflow

Output the optimized
casting design
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Another major influence on the strength of the alloy is expressed by the grain size of the
microstructure of the obtained casting. The fine-grained structure is characterized by
better properties.

The crystallization conditions and the additives added to this process are mainly
influenced by the grain size. The figure shows the mean value of the grain size when
deposited in the process of crystallization of certain additives.

80

70

8

=
o
T

35

Average Grain Size (um)
S
T

AMG60 AM60+C,Cl, AM60+CaC,

Figure 4- 22. Grain size measurement of grain refined AM60 and untreated AM60.

2014

Effect of grain refiners on squeeze casting of
magnesium alloy AM60

Yanda Zou
University of Windsor

Data on the impact of additives in a given percentage for two types of specimens on the
grain size is presented in the table.

The optimization that can be recommended in this case will depend on the additive
amount and the casting volume in which it is placed.

It is clear from the attached table that for two different casting volumes the optimal
percentage of the additive is different.

In addition to strength, grain scale assays may be performed with respect to other
mechanical performance as shown by the micro hardness.

The pursuit of sufficient observations is to make generalizations and forecasts. Different
alloys obtained under different conditions can be arranged / classified according to
different qualitative indices.
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Table 8.4. Mean grain size of AZ91 sand cast samples®

C:Clg- 50 mm sample diameter 16 mm sample diameter

addition, Min, |Max, |[Mean Std. Min, [Max, |Mean Std.

weight-%a. wm wm Grain Dewviation | um | um Grain Deviation,
Size, pm Size, pm |um

0% CaClg 834 |891,95|28336 158 58 326 |626,69 15284 103,86

0,3% CaClg 328 (3478 |120,21 546 437 (272338245 34,63

0,6% Ca2Clg 3,28 |340,14|12875 |63,68 10,94 19796 (71,26 28.56

0,9% C2Clg 20,78 {29092 (113,53 4521 2,19 (202347831 31,34

The specific relationship between the additive type, the used percentage content and the

volume of the sample on the mechanical performance is presented in the table.

For a specific application of an alloy, optimization of the amount of incorporated

additive and its evaluation on the mechanical properties can be performed.

With a given set of properties, it may be advisable to optimize the additive as an amount

added to the melt.

Table 8.3. Results of the grain refinement tests with TiC- and C,Clg-additions?.

Grain refiner, |Sample Tensile Yield Strength, |Elongation  at
Weight- % diameter, mm Strength, MPa [MPa Fracture, %
MNon grain | 50 mm 97 B3 07
refined 16 mm 171 98 3.4
0,3% TiC 16 mm 160 115 23
0,6% TiC 16 mm 149 116 1,9
0,9% TiC 16 mm 150 119 1.6
0,3% C:Clg 50 mm 122 96 0.8
16 mm 188 106 36
0,6% C:Clg 50 mm 127 98 09
16 mm 192 110 38
0,9% C:Clg 50 mm 139 98 1,1
16 mm 178 108 28
1,2% C2Clg 50 mm 118 90 1,3
16 mm 169 121 25
2% C1Cl, 50 mm 139 107 1,7
16 mm 165 118 26
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Fig. 46: Microhardness vs. (grain size)” plot of the AE21, AE42 and LAE442 alloys

This will provide a scientifically grounded proposal in which conditions an alloy of them
with a certain set of properties is better used than another.

The main material presented in the above paper contains the results of experiments
conducted. Each process of data acquisition is called an experiment.

Each process for Data Mining (DM) is called an experiment

An important prerequisite for successful selection of a model is the correct selection of
the factors included in it.

If the factors are quantitative, they are required not only to be measurable and
manageable but also to have a significant effect on the output quantity.

Incorporating insignificant factors into the model increases the cost of experimental
research without leading to a higher-quality model.

To estimate the influence of the factor on the output parameter it varies with a number
of pre-selected values, called factor levels.

Since the measured output parameter also is affected by random interference, for each
level of the factor there is realized a number of n observations.

In the statistical dependencies, only the trends of variation of the variables are persistent,
but not their values in the individual measurements
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Other applicatins from different articles
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Fig. 2 Relation between average grain size and different
amounts of added Al for Mg-Al binary alloys

Microstructure and properties of
Mg-Al binary alloys
*ZHENG Wei-chao'2, LI Shuang-shou', TANG Bin3, ZENG Da-ben?

(1. Fundamental Industry Training Center; 2. Department of Mechanical Engineering; 3. Department of Engineering Mechanics,
Tsinghua University, Beijing 100084, China )

54
51 F
>
T 48¢
>
=
S 451
©
@ 42F
§
5 39
L
o
o -
= 36
33 1 1 1 L 1

0 2 4 6 8 10
Amount of Al addition, %

Fig. 7 Micro-hardness of the a-Mg matrix of Mg-Al
binary alloys
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Fig. 3 Photographs showing grain structures of Mg-Al binary alloys
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Table 1. Tensile properties of various Mg-alloys

0.2%

Tensile Proof Elong. to Magnesium
Alloy Strength Stress Failure Elektron
Designation | (MPa) (MPa) (%) Datasheet*
AZ31B-H24 235 125 7 482
ZK60A-T5 290 180 6 486
AZ91E-T6 270 170 4.5 456
Electron 21 280 170 A 455
WE54-T5 300 200 10 480
WE43-T5 280 195 10 478
Elektron 675 410 310 9 102

* http://www.magnesium-elektron.com/.
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Figure 19. Nominal stress-strain curves at various
temperatures. Amorphous Mg(80 at%)-
Cu(10 at%)-Y (10 at %) (22).

22. Inoue, A., et. al., Materials Transactions JIM, vol. 32, no. 7, 1991, 609
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Magnesium Casting Alloys

Magnesium Casting Alloy Families — Commonly
used alloy systems employed today

Al-Zn-Mn Zn-RE-Zr Ag-RE-Zr
AZ81 EZ33 QE22
AZ91 ZE41 EQ21
AZ9?2 ZEG3

Al -Zn - Mn 1930s > mid 1980s

ZI"I = RE = Zl’ ate 1940s = late 1960s —8™—»

Ag - RE - Zr eariy 1960s >

Elektron21 iate 1990s »

Elevated Temperature Exposure on the Tensile Properties of
Various Magnesium & Aluminum Alloys
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Table I, Mpg-based castng alloys. Nominal chemical composition
(W%,

Designation | Al | Zn |Mn | Si | 25! Y | Ag | Oibers
AM20 20[<0.1 0.4 |<0.1
AMSO 5.01<01 02 |<0b.1
AMS0 | 6.0 [ =02 0.25|<0.1
AS2l 22f<01 0.2 L0
AS41 45F=<01 0.2 | 10
AE42 4.0 0.2 0.25 [ <D.] 2.0-3.0 RE (Ce-rich)
AZB3 60130 015 [ =03
AZgl 9.0(0.7 | 0.15 | <0.1

EZ33 23 0.6 3.3 RE (Ce-rich)
ZE4l 4.2 0.7 1.2 RE {Ce-rich)
EK3l 0.7 3.7 RE {(MNd-rich)
EQ2I 0.5 1.5 | 2.1 RE (Nd-rich)
QE22 0.7 2.5 | 2.1 RE (Md-rich)
WES4 05153 3.5 RE (Nd-rich)
WE43 0.5 4.0 3,0 RE (Nd-rich)
| = Mg-Si
e Mgla
500 - v Momce
. w:bm-ca |
450 — “ mé'“
® MQ-Zn-Sf
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Fig. 2.5 Published tensile strength and elongation cata for various magnesium alloys

[10, 13,36, 42, 58, 104-109].
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Zn(-Ca) Alloys
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Flow length and grain size in permanent mold casting
as a function of calcium content

280 500
230 A 450
210 1
400
E 190 -
g 170 -
S 150 300
é 130 4 250
110 -
200
M -
150
70 1
50 T : - : 100
0,00 0,20 0,40 0,60 0,80 1,00 1.20

Calcium [wit%]

Fig. 9. Flow length of AZ 31 in permanent mold as a function of calcium content.

Flow length and grain size in sand casting as a function of calcium
content
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Fig. 10. Flow length of AZ 31 in sand mold as a function of calcium content.
Bottger et al. /Controlling Microstructure in Magnesium Alloys
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Table 1. 1 - List of common alloy elements and their effect in Mg alloy systems

Properties

Alloy Designation

Element

Ag Q Improve elevated temperature [11]
properties and creep when present
with rare earths

Al A Improve castability, precipitation [11],[12]
hardeners produced, corrosion
protection

Ca X Grain refinement, improves creep [11].
resistance, improve high temperature | [13], [14]
properties

Rare Earths | E Improve creep resistance, castability, | [13], [15]

(Ce, La, Nd) orain refining, age hardening

Si S Improves creep resistance [13]

Sr J Improve creep resistance [14]

Mn M Purification [12]

Y W Improve tensile properties, grain [13]
refining

Zn Z Dctility and castability [13]

Lr K Grain refiner, purification [11],[12]
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Table 2.4. Typical room-temperature mechanical properties of cast AZ9] (F: As-cast

condition; T4: Solution treated Condition; T6: Solution treated and aged condition.) [16].

Die
. Sand Castings
Properties Castings
F F T4 T6

Tensile strength 230 MPa | 165 MPa | 275 MPa | 275 MPa

Tensile yield strength | 150 MPa | 97 MPa | 90 MPa 145 MPa

Elongation of 30 mm 3% 2.5% 15% 6%

Compressive yield
165 MPa | 9T MPa | 90 MPa | 130 MPa

strength
Shear strength 140 MPa - -—- ---
Hardness 75 HRE | 66 HRE | 62 HRE 77 HRE
Tension elastic
45 GPa
modulus
Shear elastic modulus 17 GPa

Principal fracture

Cleavage usually along {0001}
mode

[16] M.M. Avedesian, H. Baker, Magnesium and Magnesium Alloys — ASM Specialty

Handbook, ASM International, Materials Park, OH 1999,

Lead

Weights of Metals

Copper Ib/cu in.
Steel grams/cu cm

Zinc

Brass

Titanium

Aluminum

Magnesium
0.408| (0.322| |0.307| |0.285| |0.256| [0.163| [0.101| [0.065
11.3 8.9 8.5 7.9 7.1 4.5 2.8 1.8

Fig. 1. Magnesium’s light weight has allowed it to become the alloy of choice
for a number of new markets and applications, such as the automotive, power
tool, computer and electronics industries.
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Tab. 5.4: Density of the magnesium alloy AZ31

Temperature Density Temperature Density
ZENG [29] ProCasT [76]
(in K) (in kg/m?) (in K) (in kg/m?*)
293 1780 480 1750
373 1760 610 1723
473 1750 671 1710
ava 1740 T15 1701
673 1730 T63 1690
773 1720 839 1671
848 1710 875 1658
903 1690 890 1638
923 1 660 a7 1627
973 1640 1023 1592
electrochemical chemical

metal reduction
1%

inoculant for
nodular cast iron
2%

Figure 2.1 : Market share of magnesium in the year 2000 [6]
[6] M. L Khan, Y. Frayman, and S. Nahavandi, “MODELLING OF POROSITY
DEFECTS IN HIGH PRESSURE DIE CASTING WITH A NEURAL
NETWORK,” Methodology, pp. 1-6.
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Figure 10. Nominal stress-strain curves of high
pressure die casts AM-alloys with
varying Al-content (10).

10. Aune, T.K. and Westengen, H., Proc. Conf. 'Magnesium Properties and Applications for
Automobiles’, SAE 1993, paper 930418
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Table 2.3 Summary of the physical and mechamcal properfies of vanous mmplant

malerials in comparison with human bore [23, 36].

Density  Lilastic lensile l'racture lotal
1’}_3}“'_1:) modulus strenpth touglhness Elongation
(GPa) (MPa) (MPa'") (%4)

Cortical bene® I ®-21 3-20 35-2R3 3-6 1 07-2 10
Canecllons hone® L0-1.4 1.5-38
Magzinesium allovs L7420 4145 150400 15-40 2-20
Titanium alloy 44-45  110-117  830-1023 55-115 10-15
(TiALGV )
Stainless stesl TH-H.1 205-210 A450-620 50-200 S0-40
(315L)
Co Cralloys 8392 23 430 1000
Synthetuc ER| 70-120 S0-200) 0.7 -
hyvdroxyapatites

® Different values are due to differeat races, ag?, testing conditions etc.

[23] M.P Staiger, A.M. Pietak, |. Huadmai, and G. Dias, Magnesium and its alloys

as orthopedic biomaterials: A review. Biomaterials, 2006. 27(9): p. 1728-
1734

[36] F Witte, N. Hort, C. Vogt, 5. Cohen, K. Kainer, R. Willumeit, and F.
Feyerabend, Degradable biomaterials based on magnesium corrosion.

Current Opinion in Solid State & Materials Science, 2008. 12(5-6): p. 63-
72.

Corrosion Depth (wm)

5 6

(Wt%) 9 10 0

Figure 3. 8 - The relationship between corrosion depth on a-grains and their Al

content as a function of corrosion exposure time.
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Tahle 1. 4 - List of comparative comosion rates of Mg alloys.

Corrosion R e Medium Methiod

ALED = AFD] = ASS] Mal] EIS [#4]
AMB0 = AZ3] NaCl Weight Loss [85]
AFG] = AMSD Maz50y ELS [43]
Pure Mg = AZ91 = ZE41 MNal’l Weight Loss, Hydrogen | [53]
Pure Mg = AZ31 =AF9] = Mal’l Hydrogen [53]

AM30 = AMGD = ZE41

WE43 = ZE41 = AZ91 Mall Weight Loss [75]
LRG0 = AMOD = AL3] = AZY] | NaCl EIS, Electrochem [20]
AE42 = ZACRSH = ALY MalCl Weight loss [41]
AFY] = AFL] = AF3L MalCl Weight Loss [#6]
AFG] = AMGD > AM20 MalCl Air Weight loss [30]
LK31 =WES4 = E£33 MaCl+ NaOH Electrochem, EIS [71]
NZ30 = ALY MaCl Weight Loss [74]
AL I AL 6l = AP 65 =Mz | Mg(ClOgk Els [#7]
Temp 473K AE41
0.8 Load 30MPa

s AZ91

% 0.6

5] AS41

&

] 0.4

(&)

0.2
AE42
20 40 60 80
Time ( hours)

Figure 12. Creep strain vs. time for various alloys
at 200 °C, load 30 MPa (12).

. Aune, TK. and Westengen, H., Proc. Conf. 'Magnesium Alloys and Their Applications', Garmisch-
Partenkirchen, DGM 1992, 221
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Tab. 5.2: Final basic choice of the thermophysical properties of magnesinm alloy AZ31

Temperature Thermal conductivity  Specific heat | Temperature  Solid fraction
(in K) (in W/(mK))  (in J/(keK)) | (in K)
293 T6.9 1040 733.00 1.0000
323 83.9 823.23 0.9530
373 87.3 8374 0.9018
423 02.4 1042 849.27 0.8022
473 a7.0 B55.79 0.6984
523 101.8 B60.59 0.6002
n73 1148 865.09 0.4992
T33 124.0 860,12 0.3982
83T 118.7 B73.00 0.3015
849 113.4 B77.49 0.2019
H69 02.2 828292 0.1024
HE3 TG.3 1414 B86.48 0.0497
BOG T1.0 896.00 0.0000
Table 1. Castability Index for Mg Die-casting Alloys [13]
Castability Index , Ic
Thin- Medium- Thick-
ALLOY walled walled walled
castings castings castings

AZ91 20 20 20

AMS0 25 24 35

AS21 39 38 49

AEA42 S0 50 60

AJS52x 32 24 35

AJS51x 38 32 42

AJ50x 42 37 45

*The lower the number the better the castability
** For AJ51x. the freezing range 15 104°C and the normalized
conditivity value 1s 119 WmK.

Argo, et. al., “PROCESS PARAMETERS AND DIECASTING OF
NORANDA'S AJ52", 2002.
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metry Thermal
Geo Property <+ Co-?:l,ihl
Filling, M
Solidification P Property
Cooling
-
| Mold/ Core || mmu|

Lin, et. al., 2009

Figure 22. Hot tearing modeling approach [26]
26. Lin, Z., Monroe, C.A_, Huff, R K., and Beckermann, C., “PREDICTION OF HOT

TEAR DEFECTS IN STEEL CASTINGS USING A DAMAGE BASED

MODEL”, Modeling of Casting, Welding, and Advanced Solidification process-

X1T TMS 2009

&3 - T Castable (fluid)

= j T

'?%’27 & g8 } \ Britle
= 5 &

S S5 E6 :

n20 c E

L/ o 5S4

o ¢ <

5135 Y.S R 22

o 2 soft 2 i

-_;' 9 0 3 0 | L |

c 0 5 10 0 5 10 0 10 20 30

2 % Aluminum % Zinc % ZInc

Fig. 2.4. Effects of Al and Zn on the mechanical properties and castability of Mg [13].

[13] M. O. Pekgiileryiiz, M. M. Avedesian, DGM Conference "Magnesium Alloys
and Their Applications", 1992, Garmisch-Patenkirchen, Germany, p. 213.
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N Industrial B Upstream & Refining
W Flectricity ™ Agriculture o Other
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150

Mt CO, Equivalent

2020

Figure 1. 2 - Canadian green house gas emissions by sector [3].
3. D. Karmaun, G. Rideout, W. Bailey, A. Green, P. Eggleton “Transportation

Emissions: Sources and Regulations™ Air Quality Management, Springer Netherlands

(2014) 203-235

4. DESIGN OF EXPERIMENTS (DOE) STUDY

4.1 DOE Matrix Based on the Magnesium-Zirconium Phase Diagram

Pure magnesium (99.9% Mg) and magnesiume-15 wi% zirconium grain refiner master alloy were
used for the experiments. Three different parameters were varied to study grain refinement
efficacy — wi% total zirconium addition (0.25, 0.5, and 1 wt %), pouring temperature (705 and
B15°C), and settling tume (0 and 30 min). The experimental DOE matnx s shown in Table 4.1.
Thas is a full factorial experiment in one three-level factor and two two-level factors. A total of
12 grain refinement experiments were carried out. A pure magnesium hockey puck sample was
also poured for comparison.

Table 4.1 Experimental DOE matrix

Expt. No | wt% Zr | Temperature | Settling Time
(C) (min)
1 .25 705 0
2 .25 703 30
3 0.25 813 0
4 0.25 813 30
3 0.50 705 0
B 0.50 705 30
7 0.50 813 0
i 0.50 813 30
E 1.0 7035 0
10 1.0 705 30
11 1.0 813 0
12 1.0 813 30
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300 |
250 |
200 |
150 |
100 .

N

—0—705°C/0 min
—C0—T705°C/30 min
—£—B815°C/0 min
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=
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Addition Level of Zirconium (wt%)

Fig. 4.15 Measured grain size vs. zirconium addition.

500

L w—{ = 0.25% Zr/O min
450 + ~<}=0.25% Zr/30 min

! ~O—0.50% Zr/0 min
400 L —>=—0.50% Zr/30 min

L = 1.0% Zr/0 min
350 == 1.0% Zr/30 min

i == 2.0% Zr/0 min
300 [ —O—2.0% Zr/30 min
250 | <—

: —
200 +
150 -
100 iﬁ

o P

50 |- 95— :

720

740 760 780 800 820
Temperature (°C)

Fig. 4.16 Measured grain size vs. pouring temperature.
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500

'E" 4JI'.'ID_- == 0,260 Zr/T05'C
= 1250 | —<+0i5%wIN5C
— | —O—0.50% 20705°C
ﬁ 300 | ——0.50% Zn315'C
— L —— 1.0% ZUT05°C
wn 250 L —=0— 100 ZrIB1E°C
= - == 2.0% Z0705°C ]
‘m 200 o 20w zversc _—
[ - e
QO 180 —
b= __p-""_-..'.‘-.'-_ _n
100 |5
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D | 3
0 b 10 1€ 20 25 30

Settling time (min)
Fig. 4.17 Measured grain size vs. settling time.
AN ANALYSIS OF THE GRAIN REFINEMENT OF MAGNESIUM BY ZIRCONIUM

by

PARTHA SAHA

2500
—e—adge
2000 - w2
—a—Cantre
| 3
= 1500
o
o=
72
= 1000
=
(La]
500 AZB1
o 1 + - s
4] 2 4 6 3 )

Figure 2 - Grain Refining Effects of Al in Pure Mg [12]

[12]Y.C. Lee, AK. Dahle, and D.II. StTohn, “Grain Refinement of Magnesium®, Magnesium Technology
2000, TMS, pp. 211-218.
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Elongation fo failure and 0.2% proof stress of magnesium-aluminium based alloys
and AF-series alloys [34].

[34] Magontec. Mechanical properties of die-cast magnesium alloys. Unpublished raw data.

Table 3.2: Measured compositions (wt.%) by (ICP-AES).

Alloy Mg Al Mn Zn RE (Ce + La)
AM40 Bal. 444 0.21 0.05 =0.01
AMG0 Bal. 6.26 0.29 0.1 =0.01
A791 Bal. 8.88 0.19 0.74 =0.01
AEH Bal. 3.67 0.31 =001 25+133

Table 3.3: Casting parameters for HPDC magnesium alloys in this research.

Casting Parameter Parameter Value
Melt Temperature 740 =C
(01l Heaters in Both Halves of the Die 250 °C
Accumulator Pressure 110 kg/em?
Fam Velocities, Slow Speed Approximately 0.36 ms
Fam Velocities, High Speed Approximately 2.2 ms™
Average Die Fill Time 600 ms

Die Open Time 43
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Tensile Properties of Magnesium and Aluminium Casting Alloys

(ap200— {b) 20—
150 _ p 1577
5
o [ _
-4 m I
# =]
@ 100 & 10
i ﬁ —
g 2
o i
50— # 5
o o H [l
High-Pressure Die-Cast (HPDC) . .
Magnesium Alloys Aluminium Casting Alloys
[ PG AE44 Mauld Cast A558 Die-Cast A3B3
- B3 aiapur et o 2011) B (Hebert of af. 2012)
B Ame0 B AE44-TS [ HPDCAO o=y HPDCASST
B o ] AM3D {Zhu af al. 2015) (Fan ef al. 2005)

{Zhang el al. 2012)

Figure § 2 Comparison of (2) proof stress and () % elongation fo fracture of magnesium and

aluminium casting alloys. The proof stress of magnesium allovs 13 measured by the 0.45%
offset method while the proof stress of aluminium alloys is measured by the conventional
0.2% offset method. Data of magnesium alloy AM30 [1] and alvminivm alloys [2-5] are

taken from the literature.
[1]1 Zhang JH, Liu 57, Leng Z, Liv XH, Niv ZY. Zhang ML et al. Structure stability and

mechanical properties of high-pressure die-cast Mg-Al-La-Y-based alloy. Matenals

Science and Engineening A 2012; 531: p. 70-5

Performance Evaluation of High-Pressure

Die-Cast Magnesium Alloys 5 | mFilling
™ Cracking
Mark Easton, Suming Zhu, Mark Gibson, Trevor Abbott, Spang ng
» Hua Qian Ang, Xiaobo Chen, Nick Birbilis, and Gary Savage
H
a3
Table 1 Chemical compesitions (wi®) of the alloys in this sdy determined by Inductively Coupled Plasma—Optical Emission Spectroseops _E
Alley Al Si Ca S Sn Mn Zn Ce La Nd Pr Y 2 i
AZ91 888 0.19 074 I
AMED 626 029 0.1
AS31 352 0.56 027
AlS2 52 0.07 186 025*
MRII534 832 101 00 022 075
MRI1S3M 173 106 030 025 %
Q..p Q,hh \5" & gF .\‘o Q‘p

MRIZOD 649 200 043 095 028 \'\ ‘28-
AXI530 449 344 017 025 vst‘
AEA2 345 031 145 0.60 0.1 0.1 Fig. 2 Average ratings for cracking, filling and spangling for the
AE44-4 373 030 247 1.2 0.51 0.1 selected My die casting alloys usng the specially designed castability
AEA42 395 015 18|13 die
AM-HP2+ 005 042 099 168 0.9 008 — 00
Where the amount is not listed the compesition is below the detecishle range usually 001 wi'% E
*Note that it was planned to make AJEL, but the Al comtent was measured to be 5.2%, in ofer words ATS2 s
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Fig. 4 Creep strength (stress to produce 0.1% strain at 100 h) &t 150
and 175 °C for the selecied Mg alboys. Al diecagting alloy A380 is

inchided for comparison
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Fig. 5 Room tempersture yield strength determined by 0.2% offset
and 0.5% offset for the selecied Mg die-casting alloys. Al die-cadting

alloy A380 is inchided for comparison
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Fig.8 0.1% creep strength at a 150 °C and b 175 °C plotted against
cadtability index (average index of filling and cracking) for the selecied
Mg diecssting alloys. The arows show decreases in the castability
relkted © melt handling (MRI153M, MRI230D and AXJ530) and hot
tearing resistance (AM-HP2+)
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Fig. 10 0.1% creep swengthata 150 °C and b 175 °C photied against
maeris] cost relative to that of AZ91 for the selected Mg diecasting
alloys. The cirdled areas indicate alloys with high creep resigtance yet
low cost



